Microstructure, fracture behavior and mechanical properties of cellular Ti(C,N)-based cermets with varying Ni contents fabricated by multiphase-flow agglomeration and subsequent vacuum sintering
Zhiyi Jiang , Yong Zheng , Xiangyu Xu , Wei Zhou , Bo Li , Min Yang , Yijie Zhao
{"title":"Microstructure, fracture behavior and mechanical properties of cellular Ti(C,N)-based cermets with varying Ni contents fabricated by multiphase-flow agglomeration and subsequent vacuum sintering","authors":"Zhiyi Jiang , Yong Zheng , Xiangyu Xu , Wei Zhou , Bo Li , Min Yang , Yijie Zhao","doi":"10.1016/j.ijrmhm.2025.107133","DOIUrl":null,"url":null,"abstract":"<div><div>Cellular Ti(C,N)-based cermets were fabricated using multiphase-flow agglomeration followed by liquid phase sintering. The influence of the Ni binder phase content on the microstructure, mechanical properties and fracture behavior of cermets was investigated. A distinct interface between the matrix and the agglomerates was observed. As the Ni content increased, the volume percentage of the agglomerates dropped and some agglomerates began to dissolve, compromising the integrity of the structure. The TRS of cellular cermets initially elevated before decreasing. Hardness consistently declined, and toughness exhibited the opposite trend. Moreover, the relationship between the volume percentage of agglomerates and the mechanical properties of cellular cermets was modeled mathematically. From cermets A to E, there was a noticeable increase in the proportion of tearing ridges and dimples in both the matrix and agglomerates. Cracks passing through the interface were more likely to bridge or deflect, significantly consuming fracture energy. Furthermore, a larger fractal dimension indicated that the fracture behavior of cellular cermets was highly complex and irregular, contributing to superior fracture toughness. In summary, cellular cermet D containing 22 wt% Ni binder phase exhibited the highest TRS value and better hardness and fracture toughness.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"130 ","pages":"Article 107133"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825000988","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cellular Ti(C,N)-based cermets were fabricated using multiphase-flow agglomeration followed by liquid phase sintering. The influence of the Ni binder phase content on the microstructure, mechanical properties and fracture behavior of cermets was investigated. A distinct interface between the matrix and the agglomerates was observed. As the Ni content increased, the volume percentage of the agglomerates dropped and some agglomerates began to dissolve, compromising the integrity of the structure. The TRS of cellular cermets initially elevated before decreasing. Hardness consistently declined, and toughness exhibited the opposite trend. Moreover, the relationship between the volume percentage of agglomerates and the mechanical properties of cellular cermets was modeled mathematically. From cermets A to E, there was a noticeable increase in the proportion of tearing ridges and dimples in both the matrix and agglomerates. Cracks passing through the interface were more likely to bridge or deflect, significantly consuming fracture energy. Furthermore, a larger fractal dimension indicated that the fracture behavior of cellular cermets was highly complex and irregular, contributing to superior fracture toughness. In summary, cellular cermet D containing 22 wt% Ni binder phase exhibited the highest TRS value and better hardness and fracture toughness.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.