Songcheng Tan , Ying Yang , Xiaohong Fang , Xiaojun Zhao , Longchen Duan , Yule Hu
{"title":"A review on the progress in cobalt removal for PDC","authors":"Songcheng Tan , Ying Yang , Xiaohong Fang , Xiaojun Zhao , Longchen Duan , Yule Hu","doi":"10.1016/j.ijrmhm.2025.107136","DOIUrl":null,"url":null,"abstract":"<div><div>As an excellent super-hard composite cutting tool material, polycrystalline diamond composite (PDC) is widely utilized in various fields such as coal geology, oil drilling and gas extraction. However, one of the main reason for its subsequent failure is the use of cobalt, which is the most commonly used metal binder during its sintering process. In recent years, researchers have conducted studies on the methods and effects of cobalt removal after sintering. This review summarizes the studies on the role and influence of cobalt in the PDC's fabrication process as well as the researches on the progress of cobalt removal from the upper layer of PDC through acid leaching or electrolysis methods. Moreover, the effects after cobalt removal on wear resistance, thermal stability and impact toughness have been discussed. The review provides a comprehensive overview of experimental results and insights derived from studies on cobalt removal of PDC over the past dozen years. The focus is on the technologies, solution formulas of cobalt removal, and the relationship between the depth and performance of PDC after cobalt removal. It is crucial to optimize these parameters for achieving efficient and precise cobalt removal, thereby optimizing the performance of PDC.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"130 ","pages":"Article 107136"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825001015","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As an excellent super-hard composite cutting tool material, polycrystalline diamond composite (PDC) is widely utilized in various fields such as coal geology, oil drilling and gas extraction. However, one of the main reason for its subsequent failure is the use of cobalt, which is the most commonly used metal binder during its sintering process. In recent years, researchers have conducted studies on the methods and effects of cobalt removal after sintering. This review summarizes the studies on the role and influence of cobalt in the PDC's fabrication process as well as the researches on the progress of cobalt removal from the upper layer of PDC through acid leaching or electrolysis methods. Moreover, the effects after cobalt removal on wear resistance, thermal stability and impact toughness have been discussed. The review provides a comprehensive overview of experimental results and insights derived from studies on cobalt removal of PDC over the past dozen years. The focus is on the technologies, solution formulas of cobalt removal, and the relationship between the depth and performance of PDC after cobalt removal. It is crucial to optimize these parameters for achieving efficient and precise cobalt removal, thereby optimizing the performance of PDC.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.