A dual-functional needle-based VOC sensing platform for rapid vegetable phenotypic classification

IF 10.7 1区 生物学 Q1 BIOPHYSICS Biosensors and Bioelectronics Pub Date : 2025-03-04 DOI:10.1016/j.bios.2025.117341
Oindrila Hossain , Yan Wang , Mingzhuo Li , Belinda Mativenga , Sina Jamalzadegan , Noor Mohammad , Alireza Velayati , Aditi Dey Poonam , Qingshan Wei
{"title":"A dual-functional needle-based VOC sensing platform for rapid vegetable phenotypic classification","authors":"Oindrila Hossain ,&nbsp;Yan Wang ,&nbsp;Mingzhuo Li ,&nbsp;Belinda Mativenga ,&nbsp;Sina Jamalzadegan ,&nbsp;Noor Mohammad ,&nbsp;Alireza Velayati ,&nbsp;Aditi Dey Poonam ,&nbsp;Qingshan Wei","doi":"10.1016/j.bios.2025.117341","DOIUrl":null,"url":null,"abstract":"<div><div>Volatile organic compounds (VOCs) are common constituents of fruits, vegetables, and crops, and are closely associated with their quality attributes, such as firmness, sugar level, ripeness, translucency, and pungency levels. While VOCs are vital for assessing vegetable quality and phenotypic classification, traditional detection methods, such as Gas Chromatography-Mass Spectrometry (GC-MS) and Proton Transfer Reaction Mass Spectrometry (PTR-MS) are limited by expensive equipment, complex sample preparation, and slow turnaround time. Additionally, the transient nature of VOCs complicates their detection using these methods. Here, we developed a paper-based colorimetric sensor array combined with needles that could: 1) induce vegetable VOC release in a minimally invasive fashion, and 2) analyze VOCs <em>in situ</em> with a smartphone reader device. The needle sampling device helped release specific VOCs from the studied vegetables that usually require mechanic stimulation, while maintaining the vegetable viability. On the other hand, the colorimetric sensor array was optimized for sulfur compound-based VOCs with a limit of detection (LOD) in the 1–25 ppm range, and classified fourteen different vegetable VOCs, including sulfoxides, sulfides, mercaptans, thiophenes, and aldehydes. By combining principal components analysis (PCA) analysis, the integrated sensor platform proficiently discriminated between four vegetable subtypes originating from two major categories within 2 min of testing time. Additionally, the sensor demonstrates the capability to distinguish between different types of tested fruits and vegetables, including garlic, green pepper, and nectarine. This rapid and minimally invasive sensing technology holds great promise for conducting field-based vegetable quality monitoring.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"278 ","pages":"Article 117341"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325002155","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Volatile organic compounds (VOCs) are common constituents of fruits, vegetables, and crops, and are closely associated with their quality attributes, such as firmness, sugar level, ripeness, translucency, and pungency levels. While VOCs are vital for assessing vegetable quality and phenotypic classification, traditional detection methods, such as Gas Chromatography-Mass Spectrometry (GC-MS) and Proton Transfer Reaction Mass Spectrometry (PTR-MS) are limited by expensive equipment, complex sample preparation, and slow turnaround time. Additionally, the transient nature of VOCs complicates their detection using these methods. Here, we developed a paper-based colorimetric sensor array combined with needles that could: 1) induce vegetable VOC release in a minimally invasive fashion, and 2) analyze VOCs in situ with a smartphone reader device. The needle sampling device helped release specific VOCs from the studied vegetables that usually require mechanic stimulation, while maintaining the vegetable viability. On the other hand, the colorimetric sensor array was optimized for sulfur compound-based VOCs with a limit of detection (LOD) in the 1–25 ppm range, and classified fourteen different vegetable VOCs, including sulfoxides, sulfides, mercaptans, thiophenes, and aldehydes. By combining principal components analysis (PCA) analysis, the integrated sensor platform proficiently discriminated between four vegetable subtypes originating from two major categories within 2 min of testing time. Additionally, the sensor demonstrates the capability to distinguish between different types of tested fruits and vegetables, including garlic, green pepper, and nectarine. This rapid and minimally invasive sensing technology holds great promise for conducting field-based vegetable quality monitoring.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosensors and Bioelectronics
Biosensors and Bioelectronics 工程技术-电化学
CiteScore
20.80
自引率
7.10%
发文量
1006
审稿时长
29 days
期刊介绍: Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.
期刊最新文献
Corrigendum to "Reactive EEG biomarkers for diagnosis and prognosis of Alzheimer's disease and mild cognitive impairment" [Biosens. Bioelectron. 273 (2025) 117181]. In vivo monitoring of endogenous hydrogen sulfide and evaluation of natural protectants in liver injury mice using a highly selective bioluminescent probe Editorial Board A dual-functional needle-based VOC sensing platform for rapid vegetable phenotypic classification Development of a highly sensitive, high-throughput and automated CRISPR-based device for the contamination-free pathogen detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1