Crevice corrosion mechanism of L80-13Cr in Cl- containing supercritical CO2 water-rich phase considering the influence of SO2

IF 3.4 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Journal of Supercritical Fluids Pub Date : 2025-03-05 DOI:10.1016/j.supflu.2025.106577
Yu Yuan , Chen Li , Yongyang Zhao , Fengyu Zhang , Yong Xiang
{"title":"Crevice corrosion mechanism of L80-13Cr in Cl- containing supercritical CO2 water-rich phase considering the influence of SO2","authors":"Yu Yuan ,&nbsp;Chen Li ,&nbsp;Yongyang Zhao ,&nbsp;Fengyu Zhang ,&nbsp;Yong Xiang","doi":"10.1016/j.supflu.2025.106577","DOIUrl":null,"url":null,"abstract":"<div><div>Given that casing materials in CO<sub>2</sub> enhanced oil recovery (EOR) and sequestration processes are exposed to corrosive environments formed by supercritical CO<sub>2</sub> and Cl<sup>–</sup>-containing water, with the crevice sensitivity yet to be fully understood, this study investigated the crevice corrosion susceptibility of L80-13Cr in Cl<sup>–</sup>-containing supercritical CO<sub>2</sub> water-rich phases using high-pressure autoclave immersion tests. The potential impact of SO<sub>2</sub> impurities in the injected carbon dioxide was also considered. The results revealed that L80-13Cr was at risk of crevice corrosion, which was further promoted by lower pH levels and the presence of SO<sub>2</sub>. The severity of corrosion within the crevice was associated with the concentration of cathodic depolarizers in the bulk solution and the stability of the passive film. These findings underscored the necessity of studying crevice corrosion susceptibility and accounting for the influence of impurities in the carbon source under CO<sub>2</sub>-EOR and sequestration conditions.</div></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"222 ","pages":"Article 106577"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercritical Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0896844625000634","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Given that casing materials in CO2 enhanced oil recovery (EOR) and sequestration processes are exposed to corrosive environments formed by supercritical CO2 and Cl-containing water, with the crevice sensitivity yet to be fully understood, this study investigated the crevice corrosion susceptibility of L80-13Cr in Cl-containing supercritical CO2 water-rich phases using high-pressure autoclave immersion tests. The potential impact of SO2 impurities in the injected carbon dioxide was also considered. The results revealed that L80-13Cr was at risk of crevice corrosion, which was further promoted by lower pH levels and the presence of SO2. The severity of corrosion within the crevice was associated with the concentration of cathodic depolarizers in the bulk solution and the stability of the passive film. These findings underscored the necessity of studying crevice corrosion susceptibility and accounting for the influence of impurities in the carbon source under CO2-EOR and sequestration conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Supercritical Fluids
Journal of Supercritical Fluids 工程技术-工程:化工
CiteScore
7.60
自引率
10.30%
发文量
236
审稿时长
56 days
期刊介绍: The Journal of Supercritical Fluids is an international journal devoted to the fundamental and applied aspects of supercritical fluids and processes. Its aim is to provide a focused platform for academic and industrial researchers to report their findings and to have ready access to the advances in this rapidly growing field. Its coverage is multidisciplinary and includes both basic and applied topics. Thermodynamics and phase equilibria, reaction kinetics and rate processes, thermal and transport properties, and all topics related to processing such as separations (extraction, fractionation, purification, chromatography) nucleation and impregnation are within the scope. Accounts of specific engineering applications such as those encountered in food, fuel, natural products, minerals, pharmaceuticals and polymer industries are included. Topics related to high pressure equipment design, analytical techniques, sensors, and process control methodologies are also within the scope of the journal.
期刊最新文献
Techno-economic analysis of amino acids production with subcritical water technology Revealing the catalytic gasification mechanisms of toluene and naphthalene in supercritical water using ReaxFF-MD and DFT methods Energy and exergy analysis of a transcritical CO2 refrigeration system integrated with vapor injection and mechanical subcooling IFC Experimental investigation on the stress of supercritical and dense-phase CO2 pipeline system in the venting process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1