Breast milk stabilizes bacterial communities in the large intestine even after weaning

IF 2.5 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical and biophysical research communications Pub Date : 2025-03-04 DOI:10.1016/j.bbrc.2025.151585
Kaori Ito , Jahidul Islam , Kota Sakurai , Saeka Koyama , Ayumi Matsuo , Kunihiro Okano , Ryota Hirakawa , Mutsumi Furukawa , Tomonori Nochi
{"title":"Breast milk stabilizes bacterial communities in the large intestine even after weaning","authors":"Kaori Ito ,&nbsp;Jahidul Islam ,&nbsp;Kota Sakurai ,&nbsp;Saeka Koyama ,&nbsp;Ayumi Matsuo ,&nbsp;Kunihiro Okano ,&nbsp;Ryota Hirakawa ,&nbsp;Mutsumi Furukawa ,&nbsp;Tomonori Nochi","doi":"10.1016/j.bbrc.2025.151585","DOIUrl":null,"url":null,"abstract":"<div><div>The development and maintenance of a balanced microbiota is crucial for human health. Milk contains immune factors that not only protect offspring from infectious diseases but also play an important role in promoting the development and maintenance of the microbiota. However, the persisting effects of milk-derived immune factors on the maintenance of the microbiota after weaning have not been carefully examined. In this study, a cross-fostering model was employed using immunocompetent (IC) and immunodeficient (ID) mice in which one-half of the pups born from two dams were replaced. As a result, breast milk from the IC dam (IC milk) affected the development of the microbiota during lactation and maintained it even after weaning in the large intestine of the ID pups. The large intestinal microbiota of ID pups raised on IC milk remained similar to that of normal IC pups. Under normal conditions, the genus <em>Mucispirillum</em> was closely associated with other bacteria, forming a diverse bacterial community in the large intestine. In the small intestine, there were no differences in the microbiota before weaning, regardless of whether IC or ID milk was consumed. By contrast, significant differences were observed in the small intestinal microbiota between IC and ID mice after weaning; however, this was dependent on the immune-related characteristics of offspring (rather than milk-derived immune factors). These results indicate that breast milk plays an important role in the large (not small) intestine of offspring to create and maintain a diverse microbiota with a balanced bacterial network even after weaning.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"756 ","pages":"Article 151585"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25002992","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The development and maintenance of a balanced microbiota is crucial for human health. Milk contains immune factors that not only protect offspring from infectious diseases but also play an important role in promoting the development and maintenance of the microbiota. However, the persisting effects of milk-derived immune factors on the maintenance of the microbiota after weaning have not been carefully examined. In this study, a cross-fostering model was employed using immunocompetent (IC) and immunodeficient (ID) mice in which one-half of the pups born from two dams were replaced. As a result, breast milk from the IC dam (IC milk) affected the development of the microbiota during lactation and maintained it even after weaning in the large intestine of the ID pups. The large intestinal microbiota of ID pups raised on IC milk remained similar to that of normal IC pups. Under normal conditions, the genus Mucispirillum was closely associated with other bacteria, forming a diverse bacterial community in the large intestine. In the small intestine, there were no differences in the microbiota before weaning, regardless of whether IC or ID milk was consumed. By contrast, significant differences were observed in the small intestinal microbiota between IC and ID mice after weaning; however, this was dependent on the immune-related characteristics of offspring (rather than milk-derived immune factors). These results indicate that breast milk plays an important role in the large (not small) intestine of offspring to create and maintain a diverse microbiota with a balanced bacterial network even after weaning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical and biophysical research communications
Biochemical and biophysical research communications 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
1400
审稿时长
14 days
期刊介绍: Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology ; molecular biology; neurobiology; plant biology and proteomics
期刊最新文献
Editorial Board Curcumin mitigates heatstroke-induced myocardial injury by modulating the Akt/Bad/Caspase-3 pathway Raman spectroscopic modality to examine therapeutic efficacy of Galectin-3 inhibitor in prostate cancer The TT8 transcription factor alleviates nickel toxicity in Arabidopsis Study of the antimicrobial activity of carvacrol and its mechanism of action against drug-resistant bacteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1