Yizhan Wu , Fei Guo , Ya Liu , Jiajia Li , Wenhui Shi , Laiyang Song , Guangjun Wang , Jiangwei Liu
{"title":"Curcumin mitigates heatstroke-induced myocardial injury by modulating the Akt/Bad/Caspase-3 pathway","authors":"Yizhan Wu , Fei Guo , Ya Liu , Jiajia Li , Wenhui Shi , Laiyang Song , Guangjun Wang , Jiangwei Liu","doi":"10.1016/j.bbrc.2025.151653","DOIUrl":null,"url":null,"abstract":"<div><div>Heatstroke (HS) presents a major health threat, especially during summer, and is linked to myocardial injury and persistent cardiovascular complications.Curcumin has shown promise in treating myocardial damage, but its mechanisms in HS-induced myocardial damage remain unclear. We integrated curcumin targets from BATMAN-TCM, DGIdb, and PharmMapper, and identified HS-related targets from GeneCards and OMIM. The intersection of these targets was identified using Venn diagrams, and subsequently analyzed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis.Protein interactions were analyzed using STRING and visualized in Cytoscape to screen core proteins. Molecular docking was performed with these proteins and curcumin. HS mouse model was constructed for pathological assessments and WB validation of core protein expression. We identified 132 potential therapeutic targets and selected AKT1, Bad, and CASP3 as our targets for validation. Molecular docking indicated that these proteins all have good affinity with curcumin. In HS mouse model, we observed that HS led to significant myocardial cell edema, disordered arrangement, and pronounced mitochondrial swelling accompanied by the destruction of cristae. The application of curcumin effectively alleviated myocardial cell edema and the degree of mitochondrial swelling. WB revealed that HS decreased p-Akt and p-Bad while increasing cleaved-caspase-3. Curcumin treatment reversed these effects, inhibiting HS-induced myocardial cell apoptosis. Our research demonstrates that curcumin effectively safeguards against HS-induced myocardial injury in mice, potentially through the modulation of the Akt/Bad/caspase-3 pathway.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"758 ","pages":"Article 151653"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25003675","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Heatstroke (HS) presents a major health threat, especially during summer, and is linked to myocardial injury and persistent cardiovascular complications.Curcumin has shown promise in treating myocardial damage, but its mechanisms in HS-induced myocardial damage remain unclear. We integrated curcumin targets from BATMAN-TCM, DGIdb, and PharmMapper, and identified HS-related targets from GeneCards and OMIM. The intersection of these targets was identified using Venn diagrams, and subsequently analyzed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis.Protein interactions were analyzed using STRING and visualized in Cytoscape to screen core proteins. Molecular docking was performed with these proteins and curcumin. HS mouse model was constructed for pathological assessments and WB validation of core protein expression. We identified 132 potential therapeutic targets and selected AKT1, Bad, and CASP3 as our targets for validation. Molecular docking indicated that these proteins all have good affinity with curcumin. In HS mouse model, we observed that HS led to significant myocardial cell edema, disordered arrangement, and pronounced mitochondrial swelling accompanied by the destruction of cristae. The application of curcumin effectively alleviated myocardial cell edema and the degree of mitochondrial swelling. WB revealed that HS decreased p-Akt and p-Bad while increasing cleaved-caspase-3. Curcumin treatment reversed these effects, inhibiting HS-induced myocardial cell apoptosis. Our research demonstrates that curcumin effectively safeguards against HS-induced myocardial injury in mice, potentially through the modulation of the Akt/Bad/caspase-3 pathway.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics