Soluble DPP4 promotes hepatocyte lipid accumulation via SOX2-SCD1 signaling and counteracts DPP4 inhibition

IF 2.5 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical and biophysical research communications Pub Date : 2025-02-21 DOI:10.1016/j.bbrc.2025.151521
Chen Shen , Ha Ram Oh , Young Ran Park , Shinyoung Oh , Ji Hyun Park
{"title":"Soluble DPP4 promotes hepatocyte lipid accumulation via SOX2-SCD1 signaling and counteracts DPP4 inhibition","authors":"Chen Shen ,&nbsp;Ha Ram Oh ,&nbsp;Young Ran Park ,&nbsp;Shinyoung Oh ,&nbsp;Ji Hyun Park","doi":"10.1016/j.bbrc.2025.151521","DOIUrl":null,"url":null,"abstract":"<div><div>Dipeptidyl peptidase-4 (DPP4), a well-known target of antidiabetic therapy, is implicated in steatotic liver disease. However, its role in hepatic lipid metabolism, particularly the distinct functions of soluble DPP4 (sDPP4) and membrane-bound DPP4 (mbDPP4), remains unclear. Here, we identify SOX2 as a key mediator linking sDPP4 to hepatocyte lipid accumulation, uncovering a previously unreported regulatory mechanism. sDPP4 promotes free fatty acid (FFA)-induced lipid accumulation and triglyceride (TG) synthesis in hepatocytes by upregulating SOX2, a stemness-associated transcription factor. SOX2 induction increased the expression of stearoyl-coenzyme A desaturase 1 (SCD1), a key lipogenic enzyme, supporting the role of SOX2-SCD1 signaling in sDPP4-mediated hepatic steatosis. SOX2 silencing abolished these effects, confirming its requirement for sDPP4-induced lipid accumulation. Similarly, mbDPP4 overexpression increased FFA-induced lipid synthesis and SOX2 expression, while its knockdown suppressed these responses. Pharmacological inhibition of mbDPP4 activity reduced lipid accumulation and downregulated SOX2, SCD1, and fatty acid synthase expression. However, exogenous sDPP4 reversed these effects, counteracting the lipid-suppressing effect of DPP4 inhibition. In vivo, high-fat diet (HFD)-fed mice exhibited increased plasma sDPP4 levels, whereas hepatic mbDPP4 expression remained unchanged. This correlated with enhanced hepatic SOX2 expression, suggesting that elevated sDPP4 may contribute to hepatic lipid accumulation independent of mbDPP4 activity. Collectively, our findings highlight the role of sDPP4-SOX2 signaling in hepatic lipid accumulation and underscore the need to distinguish sDPP4 from mbDPP4 in steatotic liver disease. Targeting the sDPP4-SOX2 axis could be explored as a potential therapeutic approach for steatotic liver disease.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"756 ","pages":"Article 151521"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25002359","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Dipeptidyl peptidase-4 (DPP4), a well-known target of antidiabetic therapy, is implicated in steatotic liver disease. However, its role in hepatic lipid metabolism, particularly the distinct functions of soluble DPP4 (sDPP4) and membrane-bound DPP4 (mbDPP4), remains unclear. Here, we identify SOX2 as a key mediator linking sDPP4 to hepatocyte lipid accumulation, uncovering a previously unreported regulatory mechanism. sDPP4 promotes free fatty acid (FFA)-induced lipid accumulation and triglyceride (TG) synthesis in hepatocytes by upregulating SOX2, a stemness-associated transcription factor. SOX2 induction increased the expression of stearoyl-coenzyme A desaturase 1 (SCD1), a key lipogenic enzyme, supporting the role of SOX2-SCD1 signaling in sDPP4-mediated hepatic steatosis. SOX2 silencing abolished these effects, confirming its requirement for sDPP4-induced lipid accumulation. Similarly, mbDPP4 overexpression increased FFA-induced lipid synthesis and SOX2 expression, while its knockdown suppressed these responses. Pharmacological inhibition of mbDPP4 activity reduced lipid accumulation and downregulated SOX2, SCD1, and fatty acid synthase expression. However, exogenous sDPP4 reversed these effects, counteracting the lipid-suppressing effect of DPP4 inhibition. In vivo, high-fat diet (HFD)-fed mice exhibited increased plasma sDPP4 levels, whereas hepatic mbDPP4 expression remained unchanged. This correlated with enhanced hepatic SOX2 expression, suggesting that elevated sDPP4 may contribute to hepatic lipid accumulation independent of mbDPP4 activity. Collectively, our findings highlight the role of sDPP4-SOX2 signaling in hepatic lipid accumulation and underscore the need to distinguish sDPP4 from mbDPP4 in steatotic liver disease. Targeting the sDPP4-SOX2 axis could be explored as a potential therapeutic approach for steatotic liver disease.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical and biophysical research communications
Biochemical and biophysical research communications 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
1400
审稿时长
14 days
期刊介绍: Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology ; molecular biology; neurobiology; plant biology and proteomics
期刊最新文献
Editorial Board Curcumin mitigates heatstroke-induced myocardial injury by modulating the Akt/Bad/Caspase-3 pathway Raman spectroscopic modality to examine therapeutic efficacy of Galectin-3 inhibitor in prostate cancer The TT8 transcription factor alleviates nickel toxicity in Arabidopsis Study of the antimicrobial activity of carvacrol and its mechanism of action against drug-resistant bacteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1