Navigation control of unmanned aerial vehicles in dynamic collaborative indoor environment using probability fuzzy logic approach

Sameer Agrawal , Bhumeshwar K. Patle , Sudarshan Sanap
{"title":"Navigation control of unmanned aerial vehicles in dynamic collaborative indoor environment using probability fuzzy logic approach","authors":"Sameer Agrawal ,&nbsp;Bhumeshwar K. Patle ,&nbsp;Sudarshan Sanap","doi":"10.1016/j.cogr.2025.02.002","DOIUrl":null,"url":null,"abstract":"<div><div>The development of drones in various applications makes it essential to address the critical issue of providing collision-free and optimal navigation in uncertain environments. The current research work aims to develop, simulate and experiment with the Probability Fuzzy Logic (PFL) controller for route planning and obstacle avoidance for drones in uncertain static and dynamic environments. The PFL system uses probability-based impact assessment and fuzzy logic rules to deal with unknowns and environmental changes. The fuzzy logic system takes in input about the distance of objects from the drone's front, left, and right sides, as well as the probability of collision based on the drone's speed and how close it is to the obstacles. The set of thirty fuzzy rules based on the distance of the obstacle from front left and right are defined to decide the output, i.e. speed of the drone and heading angle. The simulation environment is developed using MATLAB, with grid-based motion planning that accounts for static and dynamic obstacles. The system's performance is validated through simulations and real-world experiments, comparing path length and travel time. On comparing the simulation and experimental results, the proposed PFL-based controller has been proven to be efficient, accurate, and robust for both static and dynamic and simple to complex environments. The drones can plan the shortest and most collision-free path across all the scenarios, as depicted in the simulation and experimentation results. However, due to communication delay, inaccuracy of sensor response, environmental impact and motor delay, there are slight deviations between the simulation and experimentation values. Upon performing the error analysis, it is found that the error between the simulation and experimental value is within the range of 6.66 % in all the studied scenarios.</div></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"5 ","pages":"Pages 86-113"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667241325000059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The development of drones in various applications makes it essential to address the critical issue of providing collision-free and optimal navigation in uncertain environments. The current research work aims to develop, simulate and experiment with the Probability Fuzzy Logic (PFL) controller for route planning and obstacle avoidance for drones in uncertain static and dynamic environments. The PFL system uses probability-based impact assessment and fuzzy logic rules to deal with unknowns and environmental changes. The fuzzy logic system takes in input about the distance of objects from the drone's front, left, and right sides, as well as the probability of collision based on the drone's speed and how close it is to the obstacles. The set of thirty fuzzy rules based on the distance of the obstacle from front left and right are defined to decide the output, i.e. speed of the drone and heading angle. The simulation environment is developed using MATLAB, with grid-based motion planning that accounts for static and dynamic obstacles. The system's performance is validated through simulations and real-world experiments, comparing path length and travel time. On comparing the simulation and experimental results, the proposed PFL-based controller has been proven to be efficient, accurate, and robust for both static and dynamic and simple to complex environments. The drones can plan the shortest and most collision-free path across all the scenarios, as depicted in the simulation and experimentation results. However, due to communication delay, inaccuracy of sensor response, environmental impact and motor delay, there are slight deviations between the simulation and experimentation values. Upon performing the error analysis, it is found that the error between the simulation and experimental value is within the range of 6.66 % in all the studied scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
期刊最新文献
Small target drone algorithm in low-altitude complex urban scenarios based on ESMS-YOLOv7 LiPE: Lightweight human pose estimator for mobile applications towards automated pose analysis Integrated model for segmentation of glomeruli in kidney images Zero-shot intelligent fault diagnosis via semantic fusion embedding Attention-assisted dual-branch interactive face super-resolution network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1