Ying Wang , Yuhua Peng , Changzhe He , Shuobin Chen , Jian Yu , Cheng Nie , Mao Zhang , Pan Gong , Zhigang Hu , Bin Li , Junsheng Yang
{"title":"An investigation on corrosion resistance of laser-cladded FeCoNiCrCu high-entropy alloy coatings based on different initial powder particle sizes","authors":"Ying Wang , Yuhua Peng , Changzhe He , Shuobin Chen , Jian Yu , Cheng Nie , Mao Zhang , Pan Gong , Zhigang Hu , Bin Li , Junsheng Yang","doi":"10.1016/j.surfcoat.2025.132030","DOIUrl":null,"url":null,"abstract":"<div><div>This study comprehensively investigates the corrosion mechanism of laser-cladded FeCoNiCrCu high-entropy alloy (HEA) coatings fabricated with varying initial powder particle sizes in a 3.5 % NaCl solution. Subsequent to orthogonal experimental optimization, optimal laser cladding parameters were obtained to generate fine coatings with exceptional quality. It's noteworthy that finer initial powder particles possess higher specific surface energy, promoting the formation of coatings with fewer defects. Aside from that, steady increases in corrosion current density and decreases in corrosion potential were observed with coarser initial powder particles, accompanied by lower charge transfer resistance. Corrosion preferentially initiates at surface defects, with more severe defects directly degrading corrosion resistance. The Cu accumulation at these defects generates a less extensively protective passivation film, which hinders the formation of Cr oxides. As evidently demonstrated by XPS analysis, smaller powder particles form protective films with more Cr oxides and fewer Cu oxides in comparison with those formed by larger particles. To sum up, coatings prepared from finer initial powder particle sizes display superior corrosion resistance.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"503 ","pages":"Article 132030"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897225003044","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study comprehensively investigates the corrosion mechanism of laser-cladded FeCoNiCrCu high-entropy alloy (HEA) coatings fabricated with varying initial powder particle sizes in a 3.5 % NaCl solution. Subsequent to orthogonal experimental optimization, optimal laser cladding parameters were obtained to generate fine coatings with exceptional quality. It's noteworthy that finer initial powder particles possess higher specific surface energy, promoting the formation of coatings with fewer defects. Aside from that, steady increases in corrosion current density and decreases in corrosion potential were observed with coarser initial powder particles, accompanied by lower charge transfer resistance. Corrosion preferentially initiates at surface defects, with more severe defects directly degrading corrosion resistance. The Cu accumulation at these defects generates a less extensively protective passivation film, which hinders the formation of Cr oxides. As evidently demonstrated by XPS analysis, smaller powder particles form protective films with more Cr oxides and fewer Cu oxides in comparison with those formed by larger particles. To sum up, coatings prepared from finer initial powder particle sizes display superior corrosion resistance.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.