Community-level effects of a neonicotinoid pesticide on the metabolism of freshwater microorganisms

IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY Aquatic Toxicology Pub Date : 2025-03-04 DOI:10.1016/j.aquatox.2025.107311
Alessandra CERA , Sakie KODAMA , Leanne K. FAULKS , Hiroshi HAKOYAMA
{"title":"Community-level effects of a neonicotinoid pesticide on the metabolism of freshwater microorganisms","authors":"Alessandra CERA ,&nbsp;Sakie KODAMA ,&nbsp;Leanne K. FAULKS ,&nbsp;Hiroshi HAKOYAMA","doi":"10.1016/j.aquatox.2025.107311","DOIUrl":null,"url":null,"abstract":"<div><div>This study provides an ecotoxicological assessment of the effects of the neonicotinoid dinotefuran on freshwater microorganisms. Epilithic biofilm was sampled from a small stream and exposed to dinotefuran for 14 days in Biolog EcoPlates. In general, we found that a concentration of 0.100 mg <span>l</span><sup>-1</sup> of dinotefuran induced the microorganism community to catabolise carbon sources faster. However, catabolic activity varied depending on the type of carbon source. Catabolism increased for Putrescine (+4673 %), Serine (+376 %), Galacturonic Acid (+206 %), Pyruvic Acid Methyl Ester (+177 %), and Gamma Amino Butyric Acid (+113 %); and decreased for Arginine (-59 %), Asparagine (-26 %), and Mannitol (-21 %). This is the first study in which EcoPlates have been used to investigate the effects of dinotefuran on freshwater epilithic biofilm at an environmentally realistic concentration.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"282 ","pages":"Article 107311"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X25000761","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study provides an ecotoxicological assessment of the effects of the neonicotinoid dinotefuran on freshwater microorganisms. Epilithic biofilm was sampled from a small stream and exposed to dinotefuran for 14 days in Biolog EcoPlates. In general, we found that a concentration of 0.100 mg l-1 of dinotefuran induced the microorganism community to catabolise carbon sources faster. However, catabolic activity varied depending on the type of carbon source. Catabolism increased for Putrescine (+4673 %), Serine (+376 %), Galacturonic Acid (+206 %), Pyruvic Acid Methyl Ester (+177 %), and Gamma Amino Butyric Acid (+113 %); and decreased for Arginine (-59 %), Asparagine (-26 %), and Mannitol (-21 %). This is the first study in which EcoPlates have been used to investigate the effects of dinotefuran on freshwater epilithic biofilm at an environmentally realistic concentration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Aquatic Toxicology
Aquatic Toxicology 环境科学-毒理学
CiteScore
7.10
自引率
4.40%
发文量
250
审稿时长
56 days
期刊介绍: Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems. Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.
期刊最新文献
Editorial Board Neurotoxicity and aggressive behavior induced by anesthetic etomidate exposure in zebrafish: Insights from multi-omics and machine learning Toxicity of microplastics polystyrene to freshwater planarians and the alleviative effects of anthocyanins Community-level effects of a neonicotinoid pesticide on the metabolism of freshwater microorganisms Immunotoxicity of thyroid hormone system disrupting compounds in fish
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1