{"title":"Community-level effects of a neonicotinoid pesticide on the metabolism of freshwater microorganisms","authors":"Alessandra CERA , Sakie KODAMA , Leanne K. FAULKS , Hiroshi HAKOYAMA","doi":"10.1016/j.aquatox.2025.107311","DOIUrl":null,"url":null,"abstract":"<div><div>This study provides an ecotoxicological assessment of the effects of the neonicotinoid dinotefuran on freshwater microorganisms. Epilithic biofilm was sampled from a small stream and exposed to dinotefuran for 14 days in Biolog EcoPlates. In general, we found that a concentration of 0.100 mg <span>l</span><sup>-1</sup> of dinotefuran induced the microorganism community to catabolise carbon sources faster. However, catabolic activity varied depending on the type of carbon source. Catabolism increased for Putrescine (+4673 %), Serine (+376 %), Galacturonic Acid (+206 %), Pyruvic Acid Methyl Ester (+177 %), and Gamma Amino Butyric Acid (+113 %); and decreased for Arginine (-59 %), Asparagine (-26 %), and Mannitol (-21 %). This is the first study in which EcoPlates have been used to investigate the effects of dinotefuran on freshwater epilithic biofilm at an environmentally realistic concentration.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"282 ","pages":"Article 107311"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X25000761","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study provides an ecotoxicological assessment of the effects of the neonicotinoid dinotefuran on freshwater microorganisms. Epilithic biofilm was sampled from a small stream and exposed to dinotefuran for 14 days in Biolog EcoPlates. In general, we found that a concentration of 0.100 mg l-1 of dinotefuran induced the microorganism community to catabolise carbon sources faster. However, catabolic activity varied depending on the type of carbon source. Catabolism increased for Putrescine (+4673 %), Serine (+376 %), Galacturonic Acid (+206 %), Pyruvic Acid Methyl Ester (+177 %), and Gamma Amino Butyric Acid (+113 %); and decreased for Arginine (-59 %), Asparagine (-26 %), and Mannitol (-21 %). This is the first study in which EcoPlates have been used to investigate the effects of dinotefuran on freshwater epilithic biofilm at an environmentally realistic concentration.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.