{"title":"hvarma: Autoregressive moving average model of microtremor H/V spectral ratio","authors":"Aleix Seguí , Arantza Ugalde , Juan José Egozcue","doi":"10.1016/j.simpa.2025.100745","DOIUrl":null,"url":null,"abstract":"<div><div>hvarma is a Python software for estimating the horizontal-to-vertical (<em>H</em>/<em>V</em>) spectral ratio through seismic ambient vibration measurements. It employs a parametric approach to model the <em>H</em>/<em>V</em> transfer function using an AutoRegressive Moving Average (ARMA) filter. Compared to traditional methods, this technique enhances accuracy and reliability in spectral estimates, determining the ground fundamental resonance frequency with high spectral resolution, which is important for engineering geology projects. The program inverts to find optimal filter coefficients and computes coherence between horizontal and vertical components, generating <em>H</em>/<em>V</em> transfer function visualizations across both negative and positive frequencies. Results are saved as image and text files.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"23 ","pages":"Article 100745"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963825000053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
hvarma is a Python software for estimating the horizontal-to-vertical (H/V) spectral ratio through seismic ambient vibration measurements. It employs a parametric approach to model the H/V transfer function using an AutoRegressive Moving Average (ARMA) filter. Compared to traditional methods, this technique enhances accuracy and reliability in spectral estimates, determining the ground fundamental resonance frequency with high spectral resolution, which is important for engineering geology projects. The program inverts to find optimal filter coefficients and computes coherence between horizontal and vertical components, generating H/V transfer function visualizations across both negative and positive frequencies. Results are saved as image and text files.