{"title":"VCoFWMVIFCM: An open-source code for viewpoint-based collaborative feature-weighted multi-view intuitionistic fuzzy clustering","authors":"Amin Golzari Oskouei , Negin Samadi , Asgarali Bouyer , Jafar Tanha","doi":"10.1016/j.simpa.2025.100743","DOIUrl":null,"url":null,"abstract":"<div><div>We present VCoFWMVIFCM, an open-source Python implementation of a multi-view fuzzy clustering algorithm based on Intuitionistic Fuzzy c-Means (IFCM). The method integrates adaptive view, feature, and sample weighting to account for varying importance and reduce outlier effects. Local neighborhood information enhances noise resistance, while a density-based initialization ensures stable centroid selection. These mechanisms collectively improve clustering robustness and accuracy for multi-view data. The modular implementation allows flexible execution and reproducibility, addressing real-world applications where multiple data perspectives exist. The code is publicly accessible on GitHub under the MIT license.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"23 ","pages":"Article 100743"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266596382500003X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
We present VCoFWMVIFCM, an open-source Python implementation of a multi-view fuzzy clustering algorithm based on Intuitionistic Fuzzy c-Means (IFCM). The method integrates adaptive view, feature, and sample weighting to account for varying importance and reduce outlier effects. Local neighborhood information enhances noise resistance, while a density-based initialization ensures stable centroid selection. These mechanisms collectively improve clustering robustness and accuracy for multi-view data. The modular implementation allows flexible execution and reproducibility, addressing real-world applications where multiple data perspectives exist. The code is publicly accessible on GitHub under the MIT license.