{"title":"Cryo-EM structure of a phosphotransferase system glucose transporter stalled in an intermediate conformation","authors":"Patrick Roth, Dimitrios Fotiadis","doi":"10.1016/j.yjsbx.2025.100124","DOIUrl":null,"url":null,"abstract":"<div><div>The phosphotransferase system glucose-specific transporter IICB<sup>Glc</sup> serves as a central nutrient uptake system in bacteria. It transports glucose across the plasma membrane via the IIC<sup>Glc</sup> domain and phosphorylates the substrate within the cell to produce the glycolytic intermediate, glucose-6-phosphate, through the IIB<sup>Glc</sup> domain. Furthermore, IIC<sup>Glc</sup> consists of a transport (TD) and a scaffold domain, with the latter being involved in dimer formation. Transport is mediated by an elevator-type mechanism within the IIC<sup>Glc</sup> domain, where the substrate binds to the mobile TD. This domain undergoes a large-scale rigid-body movement relative to the static scaffold domain, translocating glucose across the membrane. Structures of elevator-type transporters are typically captured in either inward- or outward-facing conformations. Intermediate states remain elusive, awaiting structural determination and mechanistic interpretation. Here, we present a single-particle cryo-EM structure of purified, <em>n</em>-dodecyl-β-D-maltopyranoside-solubilized IICB<sup>Glc</sup> from <em>Escherichia coli</em>. While the IIB<sup>Glc</sup> protein domain is flexible remaining unresolved, the dimeric IIC<sup>Glc</sup> transporter is found trapped in a hitherto unobserved intermediate conformational state. Specifically, the TD is located halfway between inward- and outward-facing states. Structural analysis revealed a specific <em>n</em>-dodecyl-β-D-maltopyranoside molecule bound to the glucose binding site. The sliding of the TD is potentially impeded halfway due to the bulky nature of the ligand and a shift of the thin gate, thereby stalling the transporter. In conclusion, this study presents a novel conformational state of IIC<sup>Glc</sup>, and provides new structural and mechanistic insights into a potential stalling mechanism, paving the way for the rational design of transport inhibitors targeting this critical bacterial metabolic process.</div></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"11 ","pages":"Article 100124"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Biology: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590152425000054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The phosphotransferase system glucose-specific transporter IICBGlc serves as a central nutrient uptake system in bacteria. It transports glucose across the plasma membrane via the IICGlc domain and phosphorylates the substrate within the cell to produce the glycolytic intermediate, glucose-6-phosphate, through the IIBGlc domain. Furthermore, IICGlc consists of a transport (TD) and a scaffold domain, with the latter being involved in dimer formation. Transport is mediated by an elevator-type mechanism within the IICGlc domain, where the substrate binds to the mobile TD. This domain undergoes a large-scale rigid-body movement relative to the static scaffold domain, translocating glucose across the membrane. Structures of elevator-type transporters are typically captured in either inward- or outward-facing conformations. Intermediate states remain elusive, awaiting structural determination and mechanistic interpretation. Here, we present a single-particle cryo-EM structure of purified, n-dodecyl-β-D-maltopyranoside-solubilized IICBGlc from Escherichia coli. While the IIBGlc protein domain is flexible remaining unresolved, the dimeric IICGlc transporter is found trapped in a hitherto unobserved intermediate conformational state. Specifically, the TD is located halfway between inward- and outward-facing states. Structural analysis revealed a specific n-dodecyl-β-D-maltopyranoside molecule bound to the glucose binding site. The sliding of the TD is potentially impeded halfway due to the bulky nature of the ligand and a shift of the thin gate, thereby stalling the transporter. In conclusion, this study presents a novel conformational state of IICGlc, and provides new structural and mechanistic insights into a potential stalling mechanism, paving the way for the rational design of transport inhibitors targeting this critical bacterial metabolic process.