LEMF: an end-to-end model for intention recognition in multivariate time with missing data

Q3 Earth and Planetary Sciences Aerospace Systems Pub Date : 2024-12-11 DOI:10.1007/s42401-024-00327-9
Zhirui Xie, Hongya Tuo, Junyao Li
{"title":"LEMF: an end-to-end model for intention recognition in multivariate time with missing data","authors":"Zhirui Xie,&nbsp;Hongya Tuo,&nbsp;Junyao Li","doi":"10.1007/s42401-024-00327-9","DOIUrl":null,"url":null,"abstract":"<div><p>The processing and application of time series are widespread, including tasks like weather forecasting, traffic flow prediction and intention recognition. However, in reality, missing data often occurs due to target occlusion or sensor failures. Many deep learning models are designed for uniformly sampled complete data and cannot be directly applied to scenarios with missing values. Traditional data preprocessing methods, such as imputation and interpolation, introduce additional noise. To address these challenges, we propose an end-to-end model with <i>Learnable Embedding</i> and capture <i>Multidimensional Features</i> (LEMF). LEMF can directly handle real-world time series with missing values. We utilize the LE module to extract richer temporal information, compensating for the limitations of missing data. The MF module can extract features related to the relationships between variables. We leverage these hidden representations for intention recognition, which is the time series classification task. We thoroughly evaluate our model on a self-constructed intention dataset. Compared to baseline model, the LEMF model achieved an average of 10% higher accuracy at each missing ratio. Additionally, we validate the model’s generalization capabilities on two real-world datasets. Our model also shows optimal or suboptimal performance.</p></div>","PeriodicalId":36309,"journal":{"name":"Aerospace Systems","volume":"8 1","pages":"171 - 181"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Systems","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42401-024-00327-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The processing and application of time series are widespread, including tasks like weather forecasting, traffic flow prediction and intention recognition. However, in reality, missing data often occurs due to target occlusion or sensor failures. Many deep learning models are designed for uniformly sampled complete data and cannot be directly applied to scenarios with missing values. Traditional data preprocessing methods, such as imputation and interpolation, introduce additional noise. To address these challenges, we propose an end-to-end model with Learnable Embedding and capture Multidimensional Features (LEMF). LEMF can directly handle real-world time series with missing values. We utilize the LE module to extract richer temporal information, compensating for the limitations of missing data. The MF module can extract features related to the relationships between variables. We leverage these hidden representations for intention recognition, which is the time series classification task. We thoroughly evaluate our model on a self-constructed intention dataset. Compared to baseline model, the LEMF model achieved an average of 10% higher accuracy at each missing ratio. Additionally, we validate the model’s generalization capabilities on two real-world datasets. Our model also shows optimal or suboptimal performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Aerospace Systems
Aerospace Systems Social Sciences-Social Sciences (miscellaneous)
CiteScore
1.80
自引率
0.00%
发文量
53
期刊介绍: Aerospace Systems provides an international, peer-reviewed forum which focuses on system-level research and development regarding aeronautics and astronautics. The journal emphasizes the unique role and increasing importance of informatics on aerospace. It fills a gap in current publishing coverage from outer space vehicles to atmospheric vehicles by highlighting interdisciplinary science, technology and engineering. Potential topics include, but are not limited to: Trans-space vehicle systems design and integration Air vehicle systems Space vehicle systems Near-space vehicle systems Aerospace robotics and unmanned system Communication, navigation and surveillance Aerodynamics and aircraft design Dynamics and control Aerospace propulsion Avionics system Opto-electronic system Air traffic management Earth observation Deep space exploration Bionic micro-aircraft/spacecraft Intelligent sensing and Information fusion
期刊最新文献
A conceptual approach to ensure the reliability of separation devices for promising launch vehicles without using pyrotechnics A graph reinforcement learning framework for real-time distributed multi-robot task allocation A mission fuel performance model based on hybrid flight physics and QAR data AI-driven modeling and control of low earth orbit satellites LEMF: an end-to-end model for intention recognition in multivariate time with missing data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1