Muhammad Hafizuddin Hazaraimi, Pei Sean Goh, Ling Yun Wang, Woei Jye Lau, Mahesan Naidu Subramaniam, Ahmad Fauzi Ismail, Norbaya Hashim, Nirmala Devi Kerisnan, Nasehir Khan E. M. Yahaya, Raja Baharudin Raja Mamat
{"title":"Multifunctional Roles of g-C3N4 in Synthesizing N-TiO2/g-C3N4 Heterojunction Photocatalyst for Photodegradation of Bisphenol A","authors":"Muhammad Hafizuddin Hazaraimi, Pei Sean Goh, Ling Yun Wang, Woei Jye Lau, Mahesan Naidu Subramaniam, Ahmad Fauzi Ismail, Norbaya Hashim, Nirmala Devi Kerisnan, Nasehir Khan E. M. Yahaya, Raja Baharudin Raja Mamat","doi":"10.1007/s13369-024-09758-0","DOIUrl":null,"url":null,"abstract":"<div><p>BPA (Bisphenol A), an endocrine disrupting compound commonly detected in various water bodies, has been found to be hazardous because it can mimic and disrupt the hormone functions in the body. Photocatalysis is among the most efficient methods for eliminating BPA from water sources. Creating efficient heterojunctions has been shown as a successful approach to tackle the main obstacles encountered by a single photocatalyst and, thereby, improving photocatalytic performance. Thus, choosing the right dopant and/or semiconductor for the formation of an effective heterojunction is crucial to ensure the cost and production feasibility for upscaling is viable. A simple two-step calcination method was employed in this work to synthesize N-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>, where g-C<sub>3</sub>N<sub>4</sub> served not only as a precursor for the preparation of the heterojunction but also as a source for nitrogen doping of TiO<sub>2</sub> to promote the photocatalytic degradation of BPA. The optimized N-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> with a mass ratio of 1:2 (TGN-2) resulted in the optimal photocatalytic degradation of BPA, which was 7.23 times better than pure TiO<sub>2</sub>. The enhanced photocatalytic performance of the composite may be attributed to the establishment of the Ti–N bond, higher crystallinity of TiO<sub>2</sub> anatase, and better separation of photoinduced charge carriers compared to other synthesized composites.</p></div>","PeriodicalId":54354,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"50 6","pages":"4367 - 4381"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s13369-024-09758-0","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
BPA (Bisphenol A), an endocrine disrupting compound commonly detected in various water bodies, has been found to be hazardous because it can mimic and disrupt the hormone functions in the body. Photocatalysis is among the most efficient methods for eliminating BPA from water sources. Creating efficient heterojunctions has been shown as a successful approach to tackle the main obstacles encountered by a single photocatalyst and, thereby, improving photocatalytic performance. Thus, choosing the right dopant and/or semiconductor for the formation of an effective heterojunction is crucial to ensure the cost and production feasibility for upscaling is viable. A simple two-step calcination method was employed in this work to synthesize N-TiO2/g-C3N4, where g-C3N4 served not only as a precursor for the preparation of the heterojunction but also as a source for nitrogen doping of TiO2 to promote the photocatalytic degradation of BPA. The optimized N-TiO2/g-C3N4 with a mass ratio of 1:2 (TGN-2) resulted in the optimal photocatalytic degradation of BPA, which was 7.23 times better than pure TiO2. The enhanced photocatalytic performance of the composite may be attributed to the establishment of the Ti–N bond, higher crystallinity of TiO2 anatase, and better separation of photoinduced charge carriers compared to other synthesized composites.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.