Multifunctional Roles of g-C3N4 in Synthesizing N-TiO2/g-C3N4 Heterojunction Photocatalyst for Photodegradation of Bisphenol A

IF 2.6 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES Arabian Journal for Science and Engineering Pub Date : 2024-11-21 DOI:10.1007/s13369-024-09758-0
Muhammad Hafizuddin Hazaraimi, Pei Sean Goh, Ling Yun Wang, Woei Jye Lau, Mahesan Naidu Subramaniam, Ahmad Fauzi Ismail, Norbaya Hashim, Nirmala Devi Kerisnan, Nasehir Khan E. M. Yahaya, Raja Baharudin Raja Mamat
{"title":"Multifunctional Roles of g-C3N4 in Synthesizing N-TiO2/g-C3N4 Heterojunction Photocatalyst for Photodegradation of Bisphenol A","authors":"Muhammad Hafizuddin Hazaraimi,&nbsp;Pei Sean Goh,&nbsp;Ling Yun Wang,&nbsp;Woei Jye Lau,&nbsp;Mahesan Naidu Subramaniam,&nbsp;Ahmad Fauzi Ismail,&nbsp;Norbaya Hashim,&nbsp;Nirmala Devi Kerisnan,&nbsp;Nasehir Khan E. M. Yahaya,&nbsp;Raja Baharudin Raja Mamat","doi":"10.1007/s13369-024-09758-0","DOIUrl":null,"url":null,"abstract":"<div><p>BPA (Bisphenol A), an endocrine disrupting compound commonly detected in various water bodies, has been found to be hazardous because it can mimic and disrupt the hormone functions in the body. Photocatalysis is among the most efficient methods for eliminating BPA from water sources. Creating efficient heterojunctions has been shown as a successful approach to tackle the main obstacles encountered by a single photocatalyst and, thereby, improving photocatalytic performance. Thus, choosing the right dopant and/or semiconductor for the formation of an effective heterojunction is crucial to ensure the cost and production feasibility for upscaling is viable. A simple two-step calcination method was employed in this work to synthesize N-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>, where g-C<sub>3</sub>N<sub>4</sub> served not only as a precursor for the preparation of the heterojunction but also as a source for nitrogen doping of TiO<sub>2</sub> to promote the photocatalytic degradation of BPA. The optimized N-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> with a mass ratio of 1:2 (TGN-2) resulted in the optimal photocatalytic degradation of BPA, which was 7.23 times better than pure TiO<sub>2</sub>. The enhanced photocatalytic performance of the composite may be attributed to the establishment of the Ti–N bond, higher crystallinity of TiO<sub>2</sub> anatase, and better separation of photoinduced charge carriers compared to other synthesized composites.</p></div>","PeriodicalId":54354,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"50 6","pages":"4367 - 4381"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s13369-024-09758-0","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

BPA (Bisphenol A), an endocrine disrupting compound commonly detected in various water bodies, has been found to be hazardous because it can mimic and disrupt the hormone functions in the body. Photocatalysis is among the most efficient methods for eliminating BPA from water sources. Creating efficient heterojunctions has been shown as a successful approach to tackle the main obstacles encountered by a single photocatalyst and, thereby, improving photocatalytic performance. Thus, choosing the right dopant and/or semiconductor for the formation of an effective heterojunction is crucial to ensure the cost and production feasibility for upscaling is viable. A simple two-step calcination method was employed in this work to synthesize N-TiO2/g-C3N4, where g-C3N4 served not only as a precursor for the preparation of the heterojunction but also as a source for nitrogen doping of TiO2 to promote the photocatalytic degradation of BPA. The optimized N-TiO2/g-C3N4 with a mass ratio of 1:2 (TGN-2) resulted in the optimal photocatalytic degradation of BPA, which was 7.23 times better than pure TiO2. The enhanced photocatalytic performance of the composite may be attributed to the establishment of the Ti–N bond, higher crystallinity of TiO2 anatase, and better separation of photoinduced charge carriers compared to other synthesized composites.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Arabian Journal for Science and Engineering
Arabian Journal for Science and Engineering MULTIDISCIPLINARY SCIENCES-
CiteScore
5.70
自引率
3.40%
发文量
993
期刊介绍: King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE). AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.
期刊最新文献
Concluding Preface Preliminary Design of NDP-400: Economical Heat Generation for Efficient Desalination Effects of Combined Utilization of Active Cooler/Heater and Blade-Shaped Nanoparticles in Base Fluid for Performance Improvement of Thermoelectric Generator Mounted in Between Vented Cavities Lignocellulosic Biomass Pretreatment Methods and Application of Extracted Fractions CO2 Adsorption Using Graphene-Based Materials: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1