Extraction and Removal of Lithium by Adsorption onto Resin Amberlyst35 from Bayer Liquor Before Seed Decomposition

IF 2.6 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES Arabian Journal for Science and Engineering Pub Date : 2024-11-13 DOI:10.1007/s13369-024-09761-5
Song Wang, Guozhi Lv, Xiaofei Li, Tingan Zhang
{"title":"Extraction and Removal of Lithium by Adsorption onto Resin Amberlyst35 from Bayer Liquor Before Seed Decomposition","authors":"Song Wang,&nbsp;Guozhi Lv,&nbsp;Xiaofei Li,&nbsp;Tingan Zhang","doi":"10.1007/s13369-024-09761-5","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium present in Bayer liquor enters the alumina during the seed decomposition process, subsequently increasing energy consumption in the aluminum electrolysis process, which is environmentally unfriendly. Combined with the global demand for lithium and the alumina industry’s pursuit of high-quality alumina, it highlights the essential need for lithium recovery in the alumina production process. This study utilized Amberlyst35 resin as an adsorbent for the adsorption of lithium from Bayer mother liquor. Under experimental conditions consisting of a causticity ratio of 1.5 in sodium aluminate solution, lithium ion concentration of 6.8 mmol/L, and a reaction temperature of 70 °C maintained over a 240-min period, the resin exhibited a lithium adsorption capacity of 5.88 mmol/g and a removal efficiency of 69.18%. The adsorption process was fitted with the pseudo-second-order kinetic model and Langmuir isotherm model, and the theoretical saturation adsorption capacity of lithium was 6.485 mmol/g. The adsorption process is an endothermic process and occurs spontaneously. Analytical techniques, specifically Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, revealed the presence of sulfonic acid groups (–SO<sub>3</sub>H) within the resin. A notable reduction in the peak intensities associated with these sulfonic acid groups post-adsorption suggested a direct interaction between the lithium ions and the sulfonic acid functionalities of the resin.</p></div>","PeriodicalId":54354,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"50 6","pages":"4339 - 4349"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s13369-024-09761-5","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium present in Bayer liquor enters the alumina during the seed decomposition process, subsequently increasing energy consumption in the aluminum electrolysis process, which is environmentally unfriendly. Combined with the global demand for lithium and the alumina industry’s pursuit of high-quality alumina, it highlights the essential need for lithium recovery in the alumina production process. This study utilized Amberlyst35 resin as an adsorbent for the adsorption of lithium from Bayer mother liquor. Under experimental conditions consisting of a causticity ratio of 1.5 in sodium aluminate solution, lithium ion concentration of 6.8 mmol/L, and a reaction temperature of 70 °C maintained over a 240-min period, the resin exhibited a lithium adsorption capacity of 5.88 mmol/g and a removal efficiency of 69.18%. The adsorption process was fitted with the pseudo-second-order kinetic model and Langmuir isotherm model, and the theoretical saturation adsorption capacity of lithium was 6.485 mmol/g. The adsorption process is an endothermic process and occurs spontaneously. Analytical techniques, specifically Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, revealed the presence of sulfonic acid groups (–SO3H) within the resin. A notable reduction in the peak intensities associated with these sulfonic acid groups post-adsorption suggested a direct interaction between the lithium ions and the sulfonic acid functionalities of the resin.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Arabian Journal for Science and Engineering
Arabian Journal for Science and Engineering MULTIDISCIPLINARY SCIENCES-
CiteScore
5.70
自引率
3.40%
发文量
993
期刊介绍: King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE). AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.
期刊最新文献
Concluding Preface Preliminary Design of NDP-400: Economical Heat Generation for Efficient Desalination Effects of Combined Utilization of Active Cooler/Heater and Blade-Shaped Nanoparticles in Base Fluid for Performance Improvement of Thermoelectric Generator Mounted in Between Vented Cavities Lignocellulosic Biomass Pretreatment Methods and Application of Extracted Fractions CO2 Adsorption Using Graphene-Based Materials: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1