Parameter studies are a common step in selecting process parameters for laser powder bed fusion of metals (PBF-LB/M). Density cubes are commonly used for this purpose. Density cubes manufactured with varied process parameters can exhibit distinguishable surface structures visible to the human eye. The layer-wise process enables such surface structures to be detected during manufacturing. However, industrial visual in situ monitoring systems for PBF-LB/M currently have limited resolution and are incapable of reliably capturing small differences in the surface structures. In this work, a 65 MPixel high-resolution monochrome camera was integrated into an industrial PBF-LB/M machine together with a high-intensity LED (light-emitting diode) bar. Post-exposure images were taken to analyse differences in light reflection of fused areas. It is revealed that the grey-level co-occurrence matrix can be used to quantify the visual surface structure of nickel-based superalloy Inconel®939 density cubes per layer. The properties of the grey-level co-occurrence matrix correlate to the energy input and the resulting porosity of density cubes. Low-energy samples containing lack of fusion flaws show an increased contrast in the grey-level co-occurrence matrix compared to specimens with optimal energy input. The potential of high-resolution images for quality assurance via in situ process monitoring in PBF-LB/M is further discussed.