Improved Modeling of Vegetation Phenology Using Soil Enthalpy

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Global Change Biology Pub Date : 2025-03-10 DOI:10.1111/gcb.70116
Xupeng Sun, Ning Lu, Miaogen Shen, Jun Qin
{"title":"Improved Modeling of Vegetation Phenology Using Soil Enthalpy","authors":"Xupeng Sun,&nbsp;Ning Lu,&nbsp;Miaogen Shen,&nbsp;Jun Qin","doi":"10.1111/gcb.70116","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Many vegetation phenological models predominantly rely on temperature, overlooking the critical roles of water availability and soil characteristics. This limitation significantly impacts the accuracy of phenological projections, particularly in water-limited ecosystems. We proposed a new approach incorporating soil enthalpy—a comprehensive metric integrating soil moisture, temperature, and texture—to improve phenological modeling. Using an extensive dataset combining FLUXNET observations, solar-induced fluorescence (SIF), and meteorological data across the Northern Hemisphere (NH), we analyzed the relationship between soil enthalpy and vegetation phenology from 2001 to 2020. Our analysis revealed significant temporal trends in soil enthalpy that corresponded with changes in leaf onset date (LOD) and leaf senescence date (LSD). We developed and validated a new soil enthalpy-based model with optimized parameters. The soil enthalpy-based model showed particularly strong performance in autumn phenology, improving LSD simulation accuracy by at least 15% across all vegetation types. For shrub and grassland ecosystems, LOD projections improved by more than 12% compared to the temperature-based model. Future scenario analysis using CMIP6 data (2020–2054) revealed that the temperature-based model consistently projects earlier LOD and later LSD compared to the soil enthalpy-based model, suggesting potential overestimation of growing season length in previous studies. This study establishes soil enthalpy as a valuable metric for phenological modeling and highlights the importance of incorporating both water availability and soil characteristics for more accurate predictions of vegetation phenology under changing climatic conditions.</p>\n </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 3","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70116","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Many vegetation phenological models predominantly rely on temperature, overlooking the critical roles of water availability and soil characteristics. This limitation significantly impacts the accuracy of phenological projections, particularly in water-limited ecosystems. We proposed a new approach incorporating soil enthalpy—a comprehensive metric integrating soil moisture, temperature, and texture—to improve phenological modeling. Using an extensive dataset combining FLUXNET observations, solar-induced fluorescence (SIF), and meteorological data across the Northern Hemisphere (NH), we analyzed the relationship between soil enthalpy and vegetation phenology from 2001 to 2020. Our analysis revealed significant temporal trends in soil enthalpy that corresponded with changes in leaf onset date (LOD) and leaf senescence date (LSD). We developed and validated a new soil enthalpy-based model with optimized parameters. The soil enthalpy-based model showed particularly strong performance in autumn phenology, improving LSD simulation accuracy by at least 15% across all vegetation types. For shrub and grassland ecosystems, LOD projections improved by more than 12% compared to the temperature-based model. Future scenario analysis using CMIP6 data (2020–2054) revealed that the temperature-based model consistently projects earlier LOD and later LSD compared to the soil enthalpy-based model, suggesting potential overestimation of growing season length in previous studies. This study establishes soil enthalpy as a valuable metric for phenological modeling and highlights the importance of incorporating both water availability and soil characteristics for more accurate predictions of vegetation phenology under changing climatic conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
期刊最新文献
The Response of Carbon Uptake to Soil Moisture Stress: Adaptation to Climatic Aridity Improved Modeling of Vegetation Phenology Using Soil Enthalpy Convergent Strategies for Leaf Traits in Tree Species From Divergent Habitats The Importance of Ditches and Canals in Global Inland Water CO2 and N2O Budgets Postglacial Recolonization of the Southern Ocean by Elephant Seals Occurred From Multiple Glacial Refugia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1