Gut metabolites and functional recovery after ischemic stroke: a genetic perspective.

IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Mammalian Genome Pub Date : 2025-03-08 DOI:10.1007/s00335-025-10120-4
Wenpeng Wu, Luwen Zhu, Jiongliang Zhang, Xinyue Li, Donghui Yu, Yuting Wang, Yumeng Su, Xiangyu Wei, Hanwen Ma, Wenjing Song, Jinting Li, Lili Teng, Qiang Tang, Minmin Wu
{"title":"Gut metabolites and functional recovery after ischemic stroke: a genetic perspective.","authors":"Wenpeng Wu, Luwen Zhu, Jiongliang Zhang, Xinyue Li, Donghui Yu, Yuting Wang, Yumeng Su, Xiangyu Wei, Hanwen Ma, Wenjing Song, Jinting Li, Lili Teng, Qiang Tang, Minmin Wu","doi":"10.1007/s00335-025-10120-4","DOIUrl":null,"url":null,"abstract":"<p><p>The current study explores the relationship between genetically predicted gut metabolites and functional outcomes following ischemic stroke, utilizing the Mendelian Randomization (MR) framework. Genetic information regarding gut microbiota-derived metabolites was sourced from 2076 participants of European descent participating in the Framingham Heart Study. Data on functional outcomes 90 days post-ischemic stroke were acquired from the Genetics of Ischemic Stroke Functional Outcomes Network (n = 6,021). Genetic proxies for gut microbiota were identified from a large-scale GWAS study by the MiBioGen consortium, encompassing 18,340 samples across 24 distinct cohorts. The inverse variance weighting method served as the primary analytical approach. Host gene-influenced gut microbiota was linked to both favorable and unfavorable functional outcomes post-ischemic stroke, involving nine and two specific microbiomes, respectively. Moreover, genetically predicted metabolites of gut microbiota showed associations with functional outcomes post-ischemic stroke, exhibiting one positive and five negative correlations. Sensitivity analyses employing alternative methods and models, not adjusted for baseline stroke severity, consistently supported these findings. This research provides genetic substantiation of the influence of specific gut microbiota and metabolites on the recovery process following ischemic stroke, suggesting a potential causal relationship. This insight offers valuable perspectives on the trajectory of post-stroke recovery and prognostic development.</p>","PeriodicalId":18259,"journal":{"name":"Mammalian Genome","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-025-10120-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The current study explores the relationship between genetically predicted gut metabolites and functional outcomes following ischemic stroke, utilizing the Mendelian Randomization (MR) framework. Genetic information regarding gut microbiota-derived metabolites was sourced from 2076 participants of European descent participating in the Framingham Heart Study. Data on functional outcomes 90 days post-ischemic stroke were acquired from the Genetics of Ischemic Stroke Functional Outcomes Network (n = 6,021). Genetic proxies for gut microbiota were identified from a large-scale GWAS study by the MiBioGen consortium, encompassing 18,340 samples across 24 distinct cohorts. The inverse variance weighting method served as the primary analytical approach. Host gene-influenced gut microbiota was linked to both favorable and unfavorable functional outcomes post-ischemic stroke, involving nine and two specific microbiomes, respectively. Moreover, genetically predicted metabolites of gut microbiota showed associations with functional outcomes post-ischemic stroke, exhibiting one positive and five negative correlations. Sensitivity analyses employing alternative methods and models, not adjusted for baseline stroke severity, consistently supported these findings. This research provides genetic substantiation of the influence of specific gut microbiota and metabolites on the recovery process following ischemic stroke, suggesting a potential causal relationship. This insight offers valuable perspectives on the trajectory of post-stroke recovery and prognostic development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Mammalian Genome
Mammalian Genome 生物-生化与分子生物学
CiteScore
4.00
自引率
0.00%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Mammalian Genome focuses on the experimental, theoretical and technical aspects of genetics, genomics, epigenetics and systems biology in mouse, human and other mammalian species, with an emphasis on the relationship between genotype and phenotype, elucidation of biological and disease pathways as well as experimental aspects of interventions, therapeutics, and precision medicine. The journal aims to publish high quality original papers that present novel findings in all areas of mammalian genetic research as well as review articles on areas of topical interest. The journal will also feature commentaries and editorials to inform readers of breakthrough discoveries as well as issues of research standards, policies and ethics.
期刊最新文献
Exploring the therapeutic effect of melatonin targeting common biomarkers in testicular germ cell tumor, prostate adenocarcinoma, and male infertility: an integrated biology approach. Gut metabolites and functional recovery after ischemic stroke: a genetic perspective. A fascination with tailless mice: a scientific historical review of studies of the T/t complex. EEF1A2 identified as a hub gene associated with the severity of metabolic dysfunction-associated steatotic liver disease. Identification of novel biomarkers for atherosclerosis using single-cell RNA sequencing and machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1