Characterization of Myrosinase-Mediated Glucosinolate Degradation Pathways in Lactiplantibacillus plantarum ZUST49

IF 5.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Journal of Agricultural and Food Chemistry Pub Date : 2025-03-10 DOI:10.1021/acs.jafc.4c11728
Xili Liang, Caoyuan Niu, Chunmin Jiang, Dajing Li, Ligen Zou, Yao Zhang, María José Benito, Yuheng Cheng, Yuanfeng Wu
{"title":"Characterization of Myrosinase-Mediated Glucosinolate Degradation Pathways in Lactiplantibacillus plantarum ZUST49","authors":"Xili Liang, Caoyuan Niu, Chunmin Jiang, Dajing Li, Ligen Zou, Yao Zhang, María José Benito, Yuheng Cheng, Yuanfeng Wu","doi":"10.1021/acs.jafc.4c11728","DOIUrl":null,"url":null,"abstract":"Cruciferous vegetables are rich in glucosinolates that can be hydrolyzed by myrosinase into isothiocyanates (ITCs) with significant anticancer properties. In the absence of bacterial myrosinase, glucosinolates are excreted from the body in their inactive forms. However, the mechanisms underlying the bacterial breakdown of glucosinolates are not well understood. Here, we investigated the mechanism and enzymes involved in glucosinolate breakdown by the probiotic microorganism <i>Lactiplantibacillus plantarum</i> ZUST49, which degrades the glucosinolate glucoraphanin to sulforaphane and erucin. The glucoraphanin-degrading activity of this strain was induced by the presence of glucoraphanin and an absence of glucose. UPLC-MS analysis of the degradation products indicated that glucoraphanin was degraded via three distinct pathways, and further, transcriptomic and proteomic analyses led to the identification of a myrosinase gene, <i>LpMyr</i>, that encodes a 460-amino acid enzyme. The purified <i>Lp</i>Myr protein exhibited optimal activity at 50 °C and pH 7.0, with hydrolysis rates of 7.74 U/mg for glucoraphanin and 5.89 U/mg for sinigrin. These findings provide new insights into the glucosinolate conversion capability of <i>L. plantarum</i> and highlight its potential for high-yield ITC production in the fermentation industry, as well as its potential use as a probiotic in the human gut.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"13 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c11728","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cruciferous vegetables are rich in glucosinolates that can be hydrolyzed by myrosinase into isothiocyanates (ITCs) with significant anticancer properties. In the absence of bacterial myrosinase, glucosinolates are excreted from the body in their inactive forms. However, the mechanisms underlying the bacterial breakdown of glucosinolates are not well understood. Here, we investigated the mechanism and enzymes involved in glucosinolate breakdown by the probiotic microorganism Lactiplantibacillus plantarum ZUST49, which degrades the glucosinolate glucoraphanin to sulforaphane and erucin. The glucoraphanin-degrading activity of this strain was induced by the presence of glucoraphanin and an absence of glucose. UPLC-MS analysis of the degradation products indicated that glucoraphanin was degraded via three distinct pathways, and further, transcriptomic and proteomic analyses led to the identification of a myrosinase gene, LpMyr, that encodes a 460-amino acid enzyme. The purified LpMyr protein exhibited optimal activity at 50 °C and pH 7.0, with hydrolysis rates of 7.74 U/mg for glucoraphanin and 5.89 U/mg for sinigrin. These findings provide new insights into the glucosinolate conversion capability of L. plantarum and highlight its potential for high-yield ITC production in the fermentation industry, as well as its potential use as a probiotic in the human gut.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
期刊最新文献
Chemical Compositions and Antibacterial Activities of Litsea cubeba Essential Oil and Its Distillates Prepared by Vacuum Fractional Distillation and Molecular Distillation Characterization and Mechanism Study of a Novel Ethanol Acetyltransferase from Hanseniaspora uvarum (EatH) with Good Thermostability, pH Stability, and Broad Alcohol Substrate Specificity Sensitivity to Boscalid and Trifloxystrobin and Fitness of Corynespora cassiicola Associated with CcSdh & CcCytb in Cucumber Molecular Insights into Pharmacological Mechanism of Insect Kir Channels and the Toxicity of Kir Inhibitors on Hemipteran Insects Characterization of Myrosinase-Mediated Glucosinolate Degradation Pathways in Lactiplantibacillus plantarum ZUST49
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1