BMP9 Alleviates Iron Accumulation-Induced Osteoporosis via the USP10/FOXO1/GPX4 Axis

IF 11.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Journal of Advanced Research Pub Date : 2025-03-09 DOI:10.1016/j.jare.2025.03.012
Yanran Huang, Jun Zhang, Yafei Zhu, Runhan Zhao, Zhou Xie, Xiao Qu, Yingtao Duan, Ningdao Li, Dagang Tang, Xiaoji Luo
{"title":"BMP9 Alleviates Iron Accumulation-Induced Osteoporosis via the USP10/FOXO1/GPX4 Axis","authors":"Yanran Huang, Jun Zhang, Yafei Zhu, Runhan Zhao, Zhou Xie, Xiao Qu, Yingtao Duan, Ningdao Li, Dagang Tang, Xiaoji Luo","doi":"10.1016/j.jare.2025.03.012","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>Ferroptosis induced by iron accumulation can disrupt the physiological functions of bone marrow mesenchymal stem cells (BMSCs). BMP9 is an effective osteogenic factor. However, the role of BMP9 and its molecular mechanisms in osteoporosis induced by iron accumulation remain unclear.<h3>Objectives</h3>This study aims to explore the role and mechanism of BMP9 in alleviating iron accumulation induced osteoporosis.<h3>Methods</h3>Clinical samples were collected to analyze the relationship between iron accumulation and osteoporosis. The effect of BMP9 on lipid peroxidation levels in BMSCs under iron accumulation conditions was assessed using C11-BODIPY staining, MitoSOX staining, MDA and SOD activity measurement. The osteogenic capacity of BMP9 in BMSCs under iron accumulation conditions was evaluated by measuring ALP activity and calcium nodule formation. The mechanisms of BMP9 in regulating BMSCs under iron accumulation conditions were explored through experiments including cycloheximide treatment, RT-PCR, Western blot, GST pull-down, ChIP, and CO-IP.<h3>Results</h3>It was observed in human samples that serum ferritin levels were negatively correlated with the bone mineral density of the lumbar spine and femoral neck. Meanwhile, ferroptosis is considered a key factor affecting bone health. Further research indicated that BMP9 could inhibit ferroptosis in cells and animal models with iron accumulation, while also improving oxidative stress and osteogenic capacity. In-depth investigation of its mechanism reveals that BMP9 promotes the expression of USP10, which removes the K48-linked ubiquitin chains on FOXO1, inhibiting its excessive ubiquitination in the cytoplasm. This stabilization allows FOXO1 to accumulate in the cytoplasm and eventually re-enter the nucleus. This process activated the expression of the key inhibitor of cell death, GPX4, enhancing the cell’s antioxidant response, reducing ferroptosis-induced damage to BMSCs, and promoting their osteogenic differentiation.<h3>Conclusion</h3>This study reveals that BMP9 inhibits ferroptosis through the USP10/FOXO1/GPX4 axis, providing a new therapeutic strategy for osteoporosis caused by iron accumulation.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"132 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.03.012","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Ferroptosis induced by iron accumulation can disrupt the physiological functions of bone marrow mesenchymal stem cells (BMSCs). BMP9 is an effective osteogenic factor. However, the role of BMP9 and its molecular mechanisms in osteoporosis induced by iron accumulation remain unclear.

Objectives

This study aims to explore the role and mechanism of BMP9 in alleviating iron accumulation induced osteoporosis.

Methods

Clinical samples were collected to analyze the relationship between iron accumulation and osteoporosis. The effect of BMP9 on lipid peroxidation levels in BMSCs under iron accumulation conditions was assessed using C11-BODIPY staining, MitoSOX staining, MDA and SOD activity measurement. The osteogenic capacity of BMP9 in BMSCs under iron accumulation conditions was evaluated by measuring ALP activity and calcium nodule formation. The mechanisms of BMP9 in regulating BMSCs under iron accumulation conditions were explored through experiments including cycloheximide treatment, RT-PCR, Western blot, GST pull-down, ChIP, and CO-IP.

Results

It was observed in human samples that serum ferritin levels were negatively correlated with the bone mineral density of the lumbar spine and femoral neck. Meanwhile, ferroptosis is considered a key factor affecting bone health. Further research indicated that BMP9 could inhibit ferroptosis in cells and animal models with iron accumulation, while also improving oxidative stress and osteogenic capacity. In-depth investigation of its mechanism reveals that BMP9 promotes the expression of USP10, which removes the K48-linked ubiquitin chains on FOXO1, inhibiting its excessive ubiquitination in the cytoplasm. This stabilization allows FOXO1 to accumulate in the cytoplasm and eventually re-enter the nucleus. This process activated the expression of the key inhibitor of cell death, GPX4, enhancing the cell’s antioxidant response, reducing ferroptosis-induced damage to BMSCs, and promoting their osteogenic differentiation.

Conclusion

This study reveals that BMP9 inhibits ferroptosis through the USP10/FOXO1/GPX4 axis, providing a new therapeutic strategy for osteoporosis caused by iron accumulation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Advanced Research
Journal of Advanced Research Multidisciplinary-Multidisciplinary
CiteScore
21.60
自引率
0.90%
发文量
280
审稿时长
12 weeks
期刊介绍: Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences. The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.
期刊最新文献
SAMD4A inhibits abdominal aortic aneurysm development and VSMC phenotypic transformation through targeting KDM2B Discovery and identification of semaphorin 4D as a bioindicator of high fracture incidence in type 2 diabetic mice with glucose control Meta-analyses of the global impact of non-antibiotic feed additives on livestock performance and health BMP9 Alleviates Iron Accumulation-Induced Osteoporosis via the USP10/FOXO1/GPX4 Axis Neutrophil extracellular traps-triggered hepatocellular senescence exacerbates lipotoxicity in non-alcoholic steatohepatitis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1