A Nd-Yb ratiometric luminescent nanothermometer for assessing thermal resistance discrepancies between A549 and BEAS-2B cells to achieve selective hyperthermia.

IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Biomaterials Science Pub Date : 2025-03-10 DOI:10.1039/d4bm01729c
Yishuo Sun, Qingbing Wang, Na Wu, Mengya Kong, Yuyang Gu, Wei Feng
{"title":"A Nd-Yb ratiometric luminescent nanothermometer for assessing thermal resistance discrepancies between A549 and BEAS-2B cells to achieve selective hyperthermia.","authors":"Yishuo Sun, Qingbing Wang, Na Wu, Mengya Kong, Yuyang Gu, Wei Feng","doi":"10.1039/d4bm01729c","DOIUrl":null,"url":null,"abstract":"<p><p>Temperature is a crucial physical parameter in living organisms, directly associated with cellular activities. Elevated temperatures induce cell death, thereby establishing hyperthermia as a viable modality for cancer therapy. The demand for determining appropriate cancer types for hyperthermia lies in identifying cancer cells that exhibit poorer heat tolerance compared to normal cells. Herein, we have designed NaNdF<sub>4</sub>:4%Yb@NaYF<sub>4</sub> with bright luminescence in the near-infrared region for the purpose of achieving <i>in situ</i> cellular temperature detection. The Nd-Yb nanothermometer provides temperature feedback based on a ratiometric luminescence intensity signal. By employing a universal cytobiology method to assess the heat resistance differences between cancer cells and normal cells across various organs, it has been observed that lung epithelial cells exhibit superior heat resistance compared to lung cancer cells. Once the Nd-Yb nanothermometer incubates within lung cells, the temperature differences between live and dead cells can be detected. The absolute temperature differences between live and dead lung cancer cells (0.1 °C) and lung epithelial cells (1.4 °C) under identical thermal stimulation (50 °C) are detected by the Nd-Yb co-doped nanothermometer, confirming that the heat resistance of normal lung cells is significantly superior to that of lung cancer cells. The differential heat resistance of lung cells enables selective hyperthermia for killing A549 cells while maximally protecting BEAS-2B cells. This research may establish rare earth nanothermometry as a valuable protocol for assessing cellular heat resistance, thereby guiding selective hyperthermia for precise lung cancer treatment.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4bm01729c","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Temperature is a crucial physical parameter in living organisms, directly associated with cellular activities. Elevated temperatures induce cell death, thereby establishing hyperthermia as a viable modality for cancer therapy. The demand for determining appropriate cancer types for hyperthermia lies in identifying cancer cells that exhibit poorer heat tolerance compared to normal cells. Herein, we have designed NaNdF4:4%Yb@NaYF4 with bright luminescence in the near-infrared region for the purpose of achieving in situ cellular temperature detection. The Nd-Yb nanothermometer provides temperature feedback based on a ratiometric luminescence intensity signal. By employing a universal cytobiology method to assess the heat resistance differences between cancer cells and normal cells across various organs, it has been observed that lung epithelial cells exhibit superior heat resistance compared to lung cancer cells. Once the Nd-Yb nanothermometer incubates within lung cells, the temperature differences between live and dead cells can be detected. The absolute temperature differences between live and dead lung cancer cells (0.1 °C) and lung epithelial cells (1.4 °C) under identical thermal stimulation (50 °C) are detected by the Nd-Yb co-doped nanothermometer, confirming that the heat resistance of normal lung cells is significantly superior to that of lung cancer cells. The differential heat resistance of lung cells enables selective hyperthermia for killing A549 cells while maximally protecting BEAS-2B cells. This research may establish rare earth nanothermometry as a valuable protocol for assessing cellular heat resistance, thereby guiding selective hyperthermia for precise lung cancer treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
期刊最新文献
A Nd-Yb ratiometric luminescent nanothermometer for assessing thermal resistance discrepancies between A549 and BEAS-2B cells to achieve selective hyperthermia. An esterase-activated prodrug against pancreatic cancer by imaging-guided photodynamic immunotherapy. Control and interplay of scaffold-biomolecule interactions applied to cartilage tissue engineering. Biofunctionalized nanomaterials for Parkinson's disease theranostics: potential for efficient PD biomarker detection and effective therapy. Enhanced in vitro transfection efficiency of mRNA-loaded polyplexes into natural killer cells through osmoregulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1