A dual-mode RNA-splitting aptamer biosensor for sensitive HIV Tat peptide detection via colorimetry and fluorescence.

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS Analytical and Bioanalytical Chemistry Pub Date : 2025-03-10 DOI:10.1007/s00216-025-05823-1
Rui Huang, Li-Kang Yin, Can Yang, Ze-Lin Wang, Rui-Min Ni, Han-Ying Zhan, Zhi-Qi Zhang
{"title":"A dual-mode RNA-splitting aptamer biosensor for sensitive HIV Tat peptide detection via colorimetry and fluorescence.","authors":"Rui Huang, Li-Kang Yin, Can Yang, Ze-Lin Wang, Rui-Min Ni, Han-Ying Zhan, Zhi-Qi Zhang","doi":"10.1007/s00216-025-05823-1","DOIUrl":null,"url":null,"abstract":"<p><p>Early diagnosis of human immunodeficiency virus (HIV) is critical for effective treatment; however, traditional antibody methods encounter challenges during the infection window, and nucleic acid tests require specialized equipment. In this study, a dual-mode ribonucleic acid (RNA)-splitting aptamer biosensor was developed to target the HIV trans-activator of transcription (Tat) protein, a key HIV biomarker for viral replication throughout the infection cycle. The biosensor integrates colorimetric and fluorescent detection techniques by utilizing gold nanoparticles (AuNPs) and two types of aptamers, one labeled with carboxyfluorescein (FAM). In the presence of Tat, RNA-splitting aptamers adsorb onto AuNPs, protecting them from recombination, while the fluorescence of FAM is quenched via fluorescence resonance energy transfer (FRET). Aptamers form a ternary complex with Tat, preventing adsorption and leading to thioflavin T-induced aggregation of AuNPs, accompanied by a visible color change and fluorescence signal restoration. The biosensor demonstrated excellent sensing performance, with a linear range of 0.5-60 nM and a detection limit of 0.28 nM, successfully detecting Tat in human serum. Therefore, this low-cost dual-mode detection platform offers a promising tool for early HIV diagnosis and potential applications in clinical and point-of-care fields.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-05823-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Early diagnosis of human immunodeficiency virus (HIV) is critical for effective treatment; however, traditional antibody methods encounter challenges during the infection window, and nucleic acid tests require specialized equipment. In this study, a dual-mode ribonucleic acid (RNA)-splitting aptamer biosensor was developed to target the HIV trans-activator of transcription (Tat) protein, a key HIV biomarker for viral replication throughout the infection cycle. The biosensor integrates colorimetric and fluorescent detection techniques by utilizing gold nanoparticles (AuNPs) and two types of aptamers, one labeled with carboxyfluorescein (FAM). In the presence of Tat, RNA-splitting aptamers adsorb onto AuNPs, protecting them from recombination, while the fluorescence of FAM is quenched via fluorescence resonance energy transfer (FRET). Aptamers form a ternary complex with Tat, preventing adsorption and leading to thioflavin T-induced aggregation of AuNPs, accompanied by a visible color change and fluorescence signal restoration. The biosensor demonstrated excellent sensing performance, with a linear range of 0.5-60 nM and a detection limit of 0.28 nM, successfully detecting Tat in human serum. Therefore, this low-cost dual-mode detection platform offers a promising tool for early HIV diagnosis and potential applications in clinical and point-of-care fields.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
4.70%
发文量
638
审稿时长
2.1 months
期刊介绍: Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.
期刊最新文献
Towards quality-assured measurements of microplastics in soil using fluorescence microscopy. A dual-mode RNA-splitting aptamer biosensor for sensitive HIV Tat peptide detection via colorimetry and fluorescence. Application of separation and configuration identification of the four tetrabenazine stereoisomers in determining their pharmacokinetics. SI-traceable characterisation of the first reference material for nanoparticle number concentration in suspension to support regulatory compliance. Predicting bone aging using spatially offset Raman spectroscopy: a longitudinal analysis on mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1