Walking control of humanoid robots based on improved footstep planner and whole-body coordination controller.

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Neurorobotics Pub Date : 2025-02-21 eCollection Date: 2025-01-01 DOI:10.3389/fnbot.2025.1538979
Xiangji Wang, Wei Guo, Siyu Yin, Sen Zhang, Fusheng Zha, Mantian Li, Pengfei Wang, Xiaolin Li, Lining Sun
{"title":"Walking control of humanoid robots based on improved footstep planner and whole-body coordination controller.","authors":"Xiangji Wang, Wei Guo, Siyu Yin, Sen Zhang, Fusheng Zha, Mantian Li, Pengfei Wang, Xiaolin Li, Lining Sun","doi":"10.3389/fnbot.2025.1538979","DOIUrl":null,"url":null,"abstract":"<p><p>High-speed walking is fundamental for humanoid robots to quickly reach the work site in emergency scenarios. According to biological studies, the coordinated motion of the arms and waist can significantly enhance walking speed and stability in humans. However, existing humanoid robot walking control frameworks predominantly focus on leg control, often overlooking the utilization of upper body joints. In this paper, a novel walking control framework combining the improved footstep planner and the whole-body coordination controller is proposed, aiming to improve the humanoid robot's tracking accuracy of desired speeds and its dynamic walking capability. First, we analyze the issues in traditional footstep planners based on Linear Inverted Pendulum and Model Predictive Control (LIP-MPC). By reconstructing the footstep optimization problem during walking using the Center-of-Mass (CoM) position, we propose an improved footstep planner to enhance the control accuracy of the desired walking speed in humanoid robots. Next, based on biological research, we define a coordinated control strategy for the arms and waist during walking. Specifically, the waist increases the robot's step length, while the arms counteract disturbance momentum and maintain balance. Based on the aforementioned strategy, we design a whole-body coordination controller for the humanoid robot. This controller adopts a novel hierarchical design approach, in which the dynamics and motion controllers for the upper and lower body are modeled and managed separately. This helps avoid the issue of poor control performance caused by multi-task coupling in traditional whole-body controllers. Finally, we integrate these controllers into a novel walking control framework and validate it on the simulation prototype of the humanoid robot Dexbot. Simulation results show that the proposed framework significantly enhances the maximum walking capability of the humanoid robot, demonstrating its feasibility and effectiveness.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"19 ","pages":"1538979"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885507/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2025.1538979","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

High-speed walking is fundamental for humanoid robots to quickly reach the work site in emergency scenarios. According to biological studies, the coordinated motion of the arms and waist can significantly enhance walking speed and stability in humans. However, existing humanoid robot walking control frameworks predominantly focus on leg control, often overlooking the utilization of upper body joints. In this paper, a novel walking control framework combining the improved footstep planner and the whole-body coordination controller is proposed, aiming to improve the humanoid robot's tracking accuracy of desired speeds and its dynamic walking capability. First, we analyze the issues in traditional footstep planners based on Linear Inverted Pendulum and Model Predictive Control (LIP-MPC). By reconstructing the footstep optimization problem during walking using the Center-of-Mass (CoM) position, we propose an improved footstep planner to enhance the control accuracy of the desired walking speed in humanoid robots. Next, based on biological research, we define a coordinated control strategy for the arms and waist during walking. Specifically, the waist increases the robot's step length, while the arms counteract disturbance momentum and maintain balance. Based on the aforementioned strategy, we design a whole-body coordination controller for the humanoid robot. This controller adopts a novel hierarchical design approach, in which the dynamics and motion controllers for the upper and lower body are modeled and managed separately. This helps avoid the issue of poor control performance caused by multi-task coupling in traditional whole-body controllers. Finally, we integrate these controllers into a novel walking control framework and validate it on the simulation prototype of the humanoid robot Dexbot. Simulation results show that the proposed framework significantly enhances the maximum walking capability of the humanoid robot, demonstrating its feasibility and effectiveness.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Neurorobotics
Frontiers in Neurorobotics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCER-ROBOTICS
CiteScore
5.20
自引率
6.50%
发文量
250
审稿时长
14 weeks
期刊介绍: Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.
期刊最新文献
Walking control of humanoid robots based on improved footstep planner and whole-body coordination controller. A survey of decision-making and planning methods for self-driving vehicles. Path planning of mobile robot based on improved double deep Q-network algorithm. A conceptual approach to material detection based on damping vibration-force signals via robot. A scalable multi-modal learning fruit detection algorithm for dynamic environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1