MIA40 suppresses cell death induced by apoptosis-inducing factor 1.

IF 6.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY EMBO Reports Pub Date : 2025-03-07 DOI:10.1038/s44319-025-00406-8
Ben Hur Marins Mussulini, Klaudia K Maruszczak, Piotr Draczkowski, Mayra A Borrero-Landazabal, Selvaraj Ayyamperumal, Artur Wnorowski, Michal Wasilewski, Agnieszka Chacinska
{"title":"MIA40 suppresses cell death induced by apoptosis-inducing factor 1.","authors":"Ben Hur Marins Mussulini, Klaudia K Maruszczak, Piotr Draczkowski, Mayra A Borrero-Landazabal, Selvaraj Ayyamperumal, Artur Wnorowski, Michal Wasilewski, Agnieszka Chacinska","doi":"10.1038/s44319-025-00406-8","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria harbor respiratory complexes that perform oxidative phosphorylation. Complex I is the first enzyme of the respiratory chain that oxidizes NADH. A dysfunction in complex I can result in higher cellular levels of NADH, which in turn strengthens the interaction between apoptosis-inducing factor 1 (AIFM1) and Mitochondrial intermembrane space import and assembly protein 40 (MIA40) in the mitochondrial intermembrane space. We investigated whether MIA40 modulates the activity of AIFM1 upon increased NADH/NAD+ balance. We found that in model cells characterized by an increase in NADH the AIFM1-MIA40 interaction is strengthened and these cells demonstrate resistance to AIFM1-induced cell death. Either silencing of MIA40, rescue of complex I, or depletion of NADH through the expression of yeast NADH-ubiquinone oxidoreductase-2 sensitized NDUFA13-KO cells to AIFM1-induced cell death. These findings indicate that the complex of MIA40 and AIFM1 suppresses AIFM1-induced cell death in a NADH-dependent manner. This study identifies an effector complex involved in regulating the programmed cell death that accommodates the metabolic changes in the cell and provides a molecular explanation for AIFM1-mediated chemoresistance of cancer cells.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00406-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondria harbor respiratory complexes that perform oxidative phosphorylation. Complex I is the first enzyme of the respiratory chain that oxidizes NADH. A dysfunction in complex I can result in higher cellular levels of NADH, which in turn strengthens the interaction between apoptosis-inducing factor 1 (AIFM1) and Mitochondrial intermembrane space import and assembly protein 40 (MIA40) in the mitochondrial intermembrane space. We investigated whether MIA40 modulates the activity of AIFM1 upon increased NADH/NAD+ balance. We found that in model cells characterized by an increase in NADH the AIFM1-MIA40 interaction is strengthened and these cells demonstrate resistance to AIFM1-induced cell death. Either silencing of MIA40, rescue of complex I, or depletion of NADH through the expression of yeast NADH-ubiquinone oxidoreductase-2 sensitized NDUFA13-KO cells to AIFM1-induced cell death. These findings indicate that the complex of MIA40 and AIFM1 suppresses AIFM1-induced cell death in a NADH-dependent manner. This study identifies an effector complex involved in regulating the programmed cell death that accommodates the metabolic changes in the cell and provides a molecular explanation for AIFM1-mediated chemoresistance of cancer cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
EMBO Reports
EMBO Reports 生物-生化与分子生物学
CiteScore
11.20
自引率
1.30%
发文量
267
审稿时长
1 months
期刊介绍: EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings. The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that: Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels. Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies. Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding. Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts. EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry. 
期刊最新文献
Auditory fear memory retrieval requires BLA-LS and LS-VMH circuitries via GABAergic and dopaminergic neurons. Autocrine Wingless constricts the Drosophila embryonic gut by Ca+2-mediated repolarisation of mesoderm cells. MIA40 suppresses cell death induced by apoptosis-inducing factor 1. Modulating tumor immunity using advanced microbiome therapeutics producing an indole metabolite. Caspase cleavage of influenza A virus M2 disrupts M2-LC3 interaction and regulates virion production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1