{"title":"A hybrid approach for lithium-ion battery remaining useful life prediction using signal decomposition and machine learning.","authors":"Yibiao Fan, Zhishan Lin, Fan Wang, Jianpeng Zhang","doi":"10.1038/s41598-025-92262-8","DOIUrl":null,"url":null,"abstract":"<p><p>Lithium-ion batteries are widely used in many fields, and accurate prediction of their remaining useful life (RUL) was crucial for effective battery management and safety assurance. In order to solve the problem of reduced RUL prediction accuracy caused by the local capacity regeneration phenomenon during battery capacity degradation, this paper proposed a novel RUL prediction method, which combined complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) technique with an innovative hybrid prediction strategy that integrated the support vector regression (SVR) and the long short-term memory (LSTM) networks. First, CEEMDAN was used to decompose the battery capacity data into high-frequency and low-frequency components, thereby reducing the impact of capacity regeneration. Subsequently, the SVR model predicted the low-frequency component that characterized the main degradation trend, and the high-frequency component that contained capacity regeneration features was predicted using an LSTM network optimized by the sparrow search algorithm (SSA). Finally, the final RUL prediction was obtained by combining the predictions of the two models. Experimental results on NASA public datasets showed that the proposed hybrid method significantly outperformed existing methods: the RMSE of the methods proposed in this paper were all less than 0.0086 Ah, the MAE were all less than 0.0060 Ah, the R<sup>2</sup> values were all higher than 0.96, and the RUL prediction errors were controlled within one cycle. This method gave full play to the complementary advantages of SVR and LSTM and provided an accurate and reliable solution for RUL prediction of lithium-ion batteries.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"8161"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-92262-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium-ion batteries are widely used in many fields, and accurate prediction of their remaining useful life (RUL) was crucial for effective battery management and safety assurance. In order to solve the problem of reduced RUL prediction accuracy caused by the local capacity regeneration phenomenon during battery capacity degradation, this paper proposed a novel RUL prediction method, which combined complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) technique with an innovative hybrid prediction strategy that integrated the support vector regression (SVR) and the long short-term memory (LSTM) networks. First, CEEMDAN was used to decompose the battery capacity data into high-frequency and low-frequency components, thereby reducing the impact of capacity regeneration. Subsequently, the SVR model predicted the low-frequency component that characterized the main degradation trend, and the high-frequency component that contained capacity regeneration features was predicted using an LSTM network optimized by the sparrow search algorithm (SSA). Finally, the final RUL prediction was obtained by combining the predictions of the two models. Experimental results on NASA public datasets showed that the proposed hybrid method significantly outperformed existing methods: the RMSE of the methods proposed in this paper were all less than 0.0086 Ah, the MAE were all less than 0.0060 Ah, the R2 values were all higher than 0.96, and the RUL prediction errors were controlled within one cycle. This method gave full play to the complementary advantages of SVR and LSTM and provided an accurate and reliable solution for RUL prediction of lithium-ion batteries.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.