Extracellular vesicular delivery of ceramides from pulmonary macrophages to endothelial cells facilitates chronic obstructive pulmonary disease.

IF 8.2 2区 生物学 Q1 CELL BIOLOGY Cell Communication and Signaling Pub Date : 2025-03-07 DOI:10.1186/s12964-025-02125-y
Qiqing Huang, Tutu Kang, Shaoran Shen, Lele Liu, Lili Zhang, Xiaoli Zou, Jianqing Wu
{"title":"Extracellular vesicular delivery of ceramides from pulmonary macrophages to endothelial cells facilitates chronic obstructive pulmonary disease.","authors":"Qiqing Huang, Tutu Kang, Shaoran Shen, Lele Liu, Lili Zhang, Xiaoli Zou, Jianqing Wu","doi":"10.1186/s12964-025-02125-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ceramides are known for their harmful, cell-autonomous effects in cigarette smoke (CS)-triggered chronic obstructive pulmonary disease (COPD), yet their potential role as intercellular signals in COPD pathogenesis remains unclear. This study aims to investigate whether ceramides act as cell-nonautonomous mediators of COPD development by transmitting metabolic stress from pulmonary macrophages to endothelial cells (ECs), compromising endothelial function and thereby orchestrating the pulmonary inflammation.</p><p><strong>Methods: </strong>We analyzed single-cell RNA sequencing data from human lung tissues and bulk RNA sequencing data from alveolar macrophages (AMs) in COPD patients to investigate the transcriptomic profiles of ceramide biosynthesis enzymes. The expression changes of several key enzymes were validated in human lung sections, AMs isolated from CS-exposed mice, and cigarette smoke extract (CSE)-treated macrophages. Ceramide levels in macrophages and their extracellular vesicles (EVs) were quantified using mass spectroscopy lipidomics. EVs were further characterized by transmission electron microscopy and nanoparticle tracking analysis. The uptake of macrophage-derived EVs by ECs and their effects on endothelial barriers were evaluated in vitro using a co-culture system and in vivo using a CS-exposed COPD mouse model.</p><p><strong>Results: </strong>CS exposure upregulated enzymes involved in de novo ceramide biosynthesis in pulmonary macrophages, increasing levels of long- and very long-chain ceramides. These ceramides were packaged into EVs and delivered to ECs, where they disrupted gap junctions, increased endothelial permeability, and impaired EC migration. Silencing these enzymes involved in de novo ceramide biosynthesis in pulmonary macrophages could block this metabolic communication between macrophages and ECs mediated by EV-delivered ceramides, protecting EC function from CS exposure. When intratracheally administered to CS-exposed mice, these ceramide-rich macrophage-derived EVs exacerbated COPD by facilitating endothelial barrier disruption.</p><p><strong>Conclusion: </strong>Our study uncovered a novel mechanism in COPD pathogenesis, where pulmonary macrophages propagate CS-induced metabolic stress to ECs via ceramide-laden EVs, leading to endothelial barrier dysfunction. This intercellular pathway represents a potential target for therapeutic intervention in COPD.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"124"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11887234/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02125-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Ceramides are known for their harmful, cell-autonomous effects in cigarette smoke (CS)-triggered chronic obstructive pulmonary disease (COPD), yet their potential role as intercellular signals in COPD pathogenesis remains unclear. This study aims to investigate whether ceramides act as cell-nonautonomous mediators of COPD development by transmitting metabolic stress from pulmonary macrophages to endothelial cells (ECs), compromising endothelial function and thereby orchestrating the pulmonary inflammation.

Methods: We analyzed single-cell RNA sequencing data from human lung tissues and bulk RNA sequencing data from alveolar macrophages (AMs) in COPD patients to investigate the transcriptomic profiles of ceramide biosynthesis enzymes. The expression changes of several key enzymes were validated in human lung sections, AMs isolated from CS-exposed mice, and cigarette smoke extract (CSE)-treated macrophages. Ceramide levels in macrophages and their extracellular vesicles (EVs) were quantified using mass spectroscopy lipidomics. EVs were further characterized by transmission electron microscopy and nanoparticle tracking analysis. The uptake of macrophage-derived EVs by ECs and their effects on endothelial barriers were evaluated in vitro using a co-culture system and in vivo using a CS-exposed COPD mouse model.

Results: CS exposure upregulated enzymes involved in de novo ceramide biosynthesis in pulmonary macrophages, increasing levels of long- and very long-chain ceramides. These ceramides were packaged into EVs and delivered to ECs, where they disrupted gap junctions, increased endothelial permeability, and impaired EC migration. Silencing these enzymes involved in de novo ceramide biosynthesis in pulmonary macrophages could block this metabolic communication between macrophages and ECs mediated by EV-delivered ceramides, protecting EC function from CS exposure. When intratracheally administered to CS-exposed mice, these ceramide-rich macrophage-derived EVs exacerbated COPD by facilitating endothelial barrier disruption.

Conclusion: Our study uncovered a novel mechanism in COPD pathogenesis, where pulmonary macrophages propagate CS-induced metabolic stress to ECs via ceramide-laden EVs, leading to endothelial barrier dysfunction. This intercellular pathway represents a potential target for therapeutic intervention in COPD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Information for Readers
IF 3.2 2区 医学Journal of vascular surgery. Venous and lymphatic disordersPub Date : 2021-03-01 DOI: 10.1016/S2213-333X(21)00007-X
Information for readers
IF 5.9 2区 计算机科学IEEE Transactions on ReliabilityPub Date : 1972-03-01 DOI: 10.1109/TR.1972.5215966
Information for Readers and readers
IF 29.4 1区 医学GastroenterologyPub Date : 2005-11-01 DOI: 10.1053/S0016-5085(05)01809-3
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
期刊最新文献
BDNF secreted by mesenchymal stem cells improves aged oocyte quality and development potential by activating the ERK1/2 pathway. MDA5 protein mediating persistent ER stress/unfolded protein response contributes to endothelial-mesenchymal-transition of lung microvascular endothelial cell in dermatomyositis. Platelet glycoprotein VI promotes folic acid-induced acute kidney injury through interaction with tubular epithelial cell-derived galectin-3. Cancer‑associated fibroblasts: a pivotal regulator of tumor microenvironment in the context of radiotherapy. Induction of LY6E regulates interleukin-1β production, potentially contributing to the immunopathogenesis of systemic lupus erythematosus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1