scLTNN: an innovative tool for automatically visualizing single-cell trajectories.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2025-02-26 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf033
Cencan Xing, Zehua Zeng, Lei Hu, Jianing Kang, Shah Roshan, Yuanyan Xiong, Hongwu Du, Tongbiao Zhao
{"title":"scLTNN: an innovative tool for automatically visualizing single-cell trajectories.","authors":"Cencan Xing, Zehua Zeng, Lei Hu, Jianing Kang, Shah Roshan, Yuanyan Xiong, Hongwu Du, Tongbiao Zhao","doi":"10.1093/bioadv/vbaf033","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Cellular state identification and trajectory inference enable the computational simulation of cell fate dynamics using single-cell RNA sequencing data. However, existing methods for constructing cell fate trajectories demand substantial computational resources or prior knowledge of the developmental process.</p><p><strong>Results: </strong>Here, based on the discovery of the consistent expression distribution of highly variable genes, we create a new tool named scRNA-seq latent time neural network (scLTNN) by combining an artificial neural network with a distribution model. This innovative tool is pre-trained and capable of automatically inferring the origin and terminal state of cells, and accurately illustrating the developmental trajectory of cells with minimal use of computational resources and time. We implement scLTNN on human bone marrow cells, mouse pancreatic endocrine lineage, and axial mesoderm lineage of zebrafish embryo, accurately reconstructing their cell fate trajectories, respectively. Our scLTNN tool provides a straightforward and efficient method for illustrating cell fate trajectories, applicable across various species without the need for prior knowledge of the biological process.</p><p><strong>Availability and implementation: </strong>https://github.com/Starlitnightly/scLTNN.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf033"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889453/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Cellular state identification and trajectory inference enable the computational simulation of cell fate dynamics using single-cell RNA sequencing data. However, existing methods for constructing cell fate trajectories demand substantial computational resources or prior knowledge of the developmental process.

Results: Here, based on the discovery of the consistent expression distribution of highly variable genes, we create a new tool named scRNA-seq latent time neural network (scLTNN) by combining an artificial neural network with a distribution model. This innovative tool is pre-trained and capable of automatically inferring the origin and terminal state of cells, and accurately illustrating the developmental trajectory of cells with minimal use of computational resources and time. We implement scLTNN on human bone marrow cells, mouse pancreatic endocrine lineage, and axial mesoderm lineage of zebrafish embryo, accurately reconstructing their cell fate trajectories, respectively. Our scLTNN tool provides a straightforward and efficient method for illustrating cell fate trajectories, applicable across various species without the need for prior knowledge of the biological process.

Availability and implementation: https://github.com/Starlitnightly/scLTNN.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
A unified hypothesis-free feature extraction framework for diverse epigenomic data. Assessing genome conservation on pangenome graphs with PanSel. Welly: a web-tool for visualizing growth curves from microplate data. PIPLOM: prediction of exogenous peptide loading on major histocompatibility complex class I molecules. scLTNN: an innovative tool for automatically visualizing single-cell trajectories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1