PIPLOM: prediction of exogenous peptide loading on major histocompatibility complex class I molecules.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2025-03-03 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf037
Florian Schmidt, Kanxing Wu, Lorenz Gerber, Florence Chioh Wen Jing, Daniel Pedrosa, Glenn Wong Choon Lim, Melissa Wirawan, Christine Eng, Katja Fink, Daniel T MacLeod, Michael Fehlings, Andreas Wilm
{"title":"PIPLOM: prediction of exogenous peptide loading on major histocompatibility complex class I molecules.","authors":"Florian Schmidt, Kanxing Wu, Lorenz Gerber, Florence Chioh Wen Jing, Daniel Pedrosa, Glenn Wong Choon Lim, Melissa Wirawan, Christine Eng, Katja Fink, Daniel T MacLeod, Michael Fehlings, Andreas Wilm","doi":"10.1093/bioadv/vbaf037","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>The exogenous, i.e. <i>in vitro</i>, loading of peptides onto major histocompatibility complex (MHC) class I molecules is a key step in many immunology-related experimental workflows. Here, we provide a machine learning solution, PIPLOM, which is specifically tailored to predict whether peptides can be loaded exogenously onto an MHC class I molecule. Benchmarking on 38 unseen epitopes with in-house ELISA (enzyme-linked immunosorbent assay) experiments showed that PIPLOM is outperforming well-established methods such as NETMHCpan-4.0 or MHCflurry, which are commonly used for the related task of predicting epitope HLA (human leukocyte antigen) haplotype specificity.</p><p><strong>Availability and implementation: </strong>Source code and data are available as Zenodo package 10.5281/zenodo.13771214. PIPLOM is available as a web service at https://piplom.immunoscape.com/.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf037"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11904885/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: The exogenous, i.e. in vitro, loading of peptides onto major histocompatibility complex (MHC) class I molecules is a key step in many immunology-related experimental workflows. Here, we provide a machine learning solution, PIPLOM, which is specifically tailored to predict whether peptides can be loaded exogenously onto an MHC class I molecule. Benchmarking on 38 unseen epitopes with in-house ELISA (enzyme-linked immunosorbent assay) experiments showed that PIPLOM is outperforming well-established methods such as NETMHCpan-4.0 or MHCflurry, which are commonly used for the related task of predicting epitope HLA (human leukocyte antigen) haplotype specificity.

Availability and implementation: Source code and data are available as Zenodo package 10.5281/zenodo.13771214. PIPLOM is available as a web service at https://piplom.immunoscape.com/.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
A unified hypothesis-free feature extraction framework for diverse epigenomic data. Assessing genome conservation on pangenome graphs with PanSel. Welly: a web-tool for visualizing growth curves from microplate data. PIPLOM: prediction of exogenous peptide loading on major histocompatibility complex class I molecules. scLTNN: an innovative tool for automatically visualizing single-cell trajectories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1