Qian Yuan, Ben Tang, Yaru Xie, Yajuan Xie, Yuting Zhu, Hua Su, Youhua Liu, Chun Zhang
{"title":"PRDM16 deficiency promotes podocyte injury by impairing insulin receptor signaling","authors":"Qian Yuan, Ben Tang, Yaru Xie, Yajuan Xie, Yuting Zhu, Hua Su, Youhua Liu, Chun Zhang","doi":"10.1038/s41418-025-01477-9","DOIUrl":null,"url":null,"abstract":"<p>Impaired glucose uptake regulated by suppressed insulin receptor signaling is a key driving force of podocytopathies. The identification of potential therapeutic targets that mediate podocyte insulin receptor signaling holds significant clinical importance. Here, we observed a substantial reduction in PR domain-containing 16 (PRDM16) expression within damaged podocytes in both humans and mice. Podocyte-specific <i>Prdm16</i> deletion aggravated podocyte injury, albuminuria, and glomerulosclerosis in diabetic nephropathy (DN) mice. Conversely, exogenous PRDM16 delivered by lentivirus mitigated these pathological changes in DN mice and adriamycin (ADR) nephropathy mice. Furthermore, we demonstrated that loss of PRDM16 blocked glucose uptake of podocytes by inhibiting insulin receptor signaling. Mechanistically, PRDM16 deficiency downregulated the transcription of NEDD4L, subsequently enhancing the stability of IKKβ protein. The accumulation of IKKβ caused by the loss of PRDM16 led to the phosphorylation of serine residues on insulin receptor substrate-1 (IRS-1), thereby promoting IRS-1 degradation. Exogenous NEDD4L mitigated podocyte injury induced by PRDM16 knockdown in vitro and attenuated ADR nephropathy in vivo. Our study clarified the role and mechanism of PRDM16 in insulin receptor signaling and podocyte injury, providing a potential therapeutic target for podocytopathies.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"38 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-025-01477-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Impaired glucose uptake regulated by suppressed insulin receptor signaling is a key driving force of podocytopathies. The identification of potential therapeutic targets that mediate podocyte insulin receptor signaling holds significant clinical importance. Here, we observed a substantial reduction in PR domain-containing 16 (PRDM16) expression within damaged podocytes in both humans and mice. Podocyte-specific Prdm16 deletion aggravated podocyte injury, albuminuria, and glomerulosclerosis in diabetic nephropathy (DN) mice. Conversely, exogenous PRDM16 delivered by lentivirus mitigated these pathological changes in DN mice and adriamycin (ADR) nephropathy mice. Furthermore, we demonstrated that loss of PRDM16 blocked glucose uptake of podocytes by inhibiting insulin receptor signaling. Mechanistically, PRDM16 deficiency downregulated the transcription of NEDD4L, subsequently enhancing the stability of IKKβ protein. The accumulation of IKKβ caused by the loss of PRDM16 led to the phosphorylation of serine residues on insulin receptor substrate-1 (IRS-1), thereby promoting IRS-1 degradation. Exogenous NEDD4L mitigated podocyte injury induced by PRDM16 knockdown in vitro and attenuated ADR nephropathy in vivo. Our study clarified the role and mechanism of PRDM16 in insulin receptor signaling and podocyte injury, providing a potential therapeutic target for podocytopathies.
期刊介绍:
Mission, vision and values of Cell Death & Differentiation:
To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease.
To provide a unified forum for scientists and clinical researchers
It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.