PRDM16 deficiency promotes podocyte injury by impairing insulin receptor signaling

IF 13.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Death and Differentiation Pub Date : 2025-03-10 DOI:10.1038/s41418-025-01477-9
Qian Yuan, Ben Tang, Yaru Xie, Yajuan Xie, Yuting Zhu, Hua Su, Youhua Liu, Chun Zhang
{"title":"PRDM16 deficiency promotes podocyte injury by impairing insulin receptor signaling","authors":"Qian Yuan, Ben Tang, Yaru Xie, Yajuan Xie, Yuting Zhu, Hua Su, Youhua Liu, Chun Zhang","doi":"10.1038/s41418-025-01477-9","DOIUrl":null,"url":null,"abstract":"<p>Impaired glucose uptake regulated by suppressed insulin receptor signaling is a key driving force of podocytopathies. The identification of potential therapeutic targets that mediate podocyte insulin receptor signaling holds significant clinical importance. Here, we observed a substantial reduction in PR domain-containing 16 (PRDM16) expression within damaged podocytes in both humans and mice. Podocyte-specific <i>Prdm16</i> deletion aggravated podocyte injury, albuminuria, and glomerulosclerosis in diabetic nephropathy (DN) mice. Conversely, exogenous PRDM16 delivered by lentivirus mitigated these pathological changes in DN mice and adriamycin (ADR) nephropathy mice. Furthermore, we demonstrated that loss of PRDM16 blocked glucose uptake of podocytes by inhibiting insulin receptor signaling. Mechanistically, PRDM16 deficiency downregulated the transcription of NEDD4L, subsequently enhancing the stability of IKKβ protein. The accumulation of IKKβ caused by the loss of PRDM16 led to the phosphorylation of serine residues on insulin receptor substrate-1 (IRS-1), thereby promoting IRS-1 degradation. Exogenous NEDD4L mitigated podocyte injury induced by PRDM16 knockdown in vitro and attenuated ADR nephropathy in vivo. Our study clarified the role and mechanism of PRDM16 in insulin receptor signaling and podocyte injury, providing a potential therapeutic target for podocytopathies.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"38 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-025-01477-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Impaired glucose uptake regulated by suppressed insulin receptor signaling is a key driving force of podocytopathies. The identification of potential therapeutic targets that mediate podocyte insulin receptor signaling holds significant clinical importance. Here, we observed a substantial reduction in PR domain-containing 16 (PRDM16) expression within damaged podocytes in both humans and mice. Podocyte-specific Prdm16 deletion aggravated podocyte injury, albuminuria, and glomerulosclerosis in diabetic nephropathy (DN) mice. Conversely, exogenous PRDM16 delivered by lentivirus mitigated these pathological changes in DN mice and adriamycin (ADR) nephropathy mice. Furthermore, we demonstrated that loss of PRDM16 blocked glucose uptake of podocytes by inhibiting insulin receptor signaling. Mechanistically, PRDM16 deficiency downregulated the transcription of NEDD4L, subsequently enhancing the stability of IKKβ protein. The accumulation of IKKβ caused by the loss of PRDM16 led to the phosphorylation of serine residues on insulin receptor substrate-1 (IRS-1), thereby promoting IRS-1 degradation. Exogenous NEDD4L mitigated podocyte injury induced by PRDM16 knockdown in vitro and attenuated ADR nephropathy in vivo. Our study clarified the role and mechanism of PRDM16 in insulin receptor signaling and podocyte injury, providing a potential therapeutic target for podocytopathies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Death and Differentiation
Cell Death and Differentiation 生物-生化与分子生物学
CiteScore
24.70
自引率
1.60%
发文量
181
审稿时长
3 months
期刊介绍: Mission, vision and values of Cell Death & Differentiation: To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease. To provide a unified forum for scientists and clinical researchers It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
期刊最新文献
PRDM16 deficiency promotes podocyte injury by impairing insulin receptor signaling CKLF1 disrupts microglial efferocytosis following acute ischemic stroke by binding to phosphatidylserine Cancer-intrinsic Cxcl5 orchestrates a global metabolic reprogramming for resistance to oxidative cell death in 3D c-Kit+ cells that intercalate with crypt Lgr5+ cells are distinctively multipotent in colonic epithelium renewal and repair ZNF451 collaborates with RNF8 to regulate RNF168 localization and amplify ubiquitination signaling to promote DNA damage repair and regulate radiosensitivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1