Seonhwa Park, Minji Gwon, Hyeryeong Lee, Seonghye Kim, Suhkmann Kim, Jung Min Joo, Tae Hyeon Yoo, Haesik Yang
{"title":"Enhanced selectivity in detecting matrix metalloproteinase-2 via sequential affinity capture, cascade reaction, and electrochemical measurement","authors":"Seonhwa Park, Minji Gwon, Hyeryeong Lee, Seonghye Kim, Suhkmann Kim, Jung Min Joo, Tae Hyeon Yoo, Haesik Yang","doi":"10.1016/j.snb.2025.137586","DOIUrl":null,"url":null,"abstract":"Selective detection of proteases in complex biological matrices remains a significant challenge due to interference from multiple proteases and inhibitors. This study introduces a novel method for the selective and sensitive detection of matrix metalloproteinase-2 (MMP-2) employing a sequence of affinity capture, cascade reaction, and electrochemical measurement. The method begins with the affinity capture of MMP-2 on an electrode, followed by a washing step to mitigate interference from other proteases and inhibitors present in human serum. This is followed by a cascade reaction, where proteolytic cleavage of auto-inhibited β-lactamase by MMP-2 and subsequent ring-opening hydrolysis of electro-inactive nitrocefin by the activated β-lactamase rapidly produce electro-active open-nitrocefin. Electrochemical measurements of this open-nitrocefin near the electrode surface generate a high signal. This method achieved a detection limit of 20<!-- --> <!-- -->ng/mL for MMP-2 in human serum and demonstrated high selectivity against a range of proteases. The study presents a new strategy for the selective and sensitive detection of proteases in complex biological samples, potentially enhancing diagnostic approaches for protease-related diseases.","PeriodicalId":425,"journal":{"name":"Sensors and Actuators B: Chemical","volume":"40 1","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators B: Chemical","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.snb.2025.137586","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Selective detection of proteases in complex biological matrices remains a significant challenge due to interference from multiple proteases and inhibitors. This study introduces a novel method for the selective and sensitive detection of matrix metalloproteinase-2 (MMP-2) employing a sequence of affinity capture, cascade reaction, and electrochemical measurement. The method begins with the affinity capture of MMP-2 on an electrode, followed by a washing step to mitigate interference from other proteases and inhibitors present in human serum. This is followed by a cascade reaction, where proteolytic cleavage of auto-inhibited β-lactamase by MMP-2 and subsequent ring-opening hydrolysis of electro-inactive nitrocefin by the activated β-lactamase rapidly produce electro-active open-nitrocefin. Electrochemical measurements of this open-nitrocefin near the electrode surface generate a high signal. This method achieved a detection limit of 20 ng/mL for MMP-2 in human serum and demonstrated high selectivity against a range of proteases. The study presents a new strategy for the selective and sensitive detection of proteases in complex biological samples, potentially enhancing diagnostic approaches for protease-related diseases.
期刊介绍:
Sensors & Actuators, B: Chemical is an international journal focused on the research and development of chemical transducers. It covers chemical sensors and biosensors, chemical actuators, and analytical microsystems. The journal is interdisciplinary, aiming to publish original works showcasing substantial advancements beyond the current state of the art in these fields, with practical applicability to solving meaningful analytical problems. Review articles are accepted by invitation from an Editor of the journal.