{"title":"Advances in magnesium-based bioresorbable cardiovascular stents: Surface engineering and clinical prospects","authors":"Ganesh Kumar, Subham Preetam, Arunima Pandey, Nick Birbilis, Saad Al-Saadi, Pooria Pasbakhsh, Mikhail Zheludkevich, Poovarasi Balan","doi":"10.1016/j.jma.2025.01.025","DOIUrl":null,"url":null,"abstract":"Magnesium (Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy; offering temporary vessel support and complete biodegradability—addressing limitations of traditional stents like in-stent restenosis and long-term complications. However, challenges such as rapid corrosion and suboptimal endothelialisation have hindered their clinical adoption. This review highlights the latest breakthroughs in surface modification, alloying, and coating strategies to enhance the mechanical integrity, corrosion resistance, and biocompatibility of Mg-based stents. Key surface engineering techniques, including polymer and bioactive coatings, are examined for their role in promoting endothelial healing and minimising inflammatory responses. Future directions are proposed, focusing on personalised stent designs to optimize efficacy and long-term outcomes, positioning Mg-based stents as a transformative solution in interventional cardiology.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"27 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.01.025","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Magnesium (Mg)-based bioresorbable stents represent a potentially groundbreaking advancement in cardiovascular therapy; offering temporary vessel support and complete biodegradability—addressing limitations of traditional stents like in-stent restenosis and long-term complications. However, challenges such as rapid corrosion and suboptimal endothelialisation have hindered their clinical adoption. This review highlights the latest breakthroughs in surface modification, alloying, and coating strategies to enhance the mechanical integrity, corrosion resistance, and biocompatibility of Mg-based stents. Key surface engineering techniques, including polymer and bioactive coatings, are examined for their role in promoting endothelial healing and minimising inflammatory responses. Future directions are proposed, focusing on personalised stent designs to optimize efficacy and long-term outcomes, positioning Mg-based stents as a transformative solution in interventional cardiology.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.