Removal efficiency and adaptive response mechanisms of microalgal-bacterial granular sludge in treating chloramphenicol-laden wastewater

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Journal of Hazardous Materials Pub Date : 2025-03-10 DOI:10.1016/j.jhazmat.2025.137904
Yang Bai, Hua Liang, Bin Ji, Bingheng Chen, Anjie Li, Xiaoyuan Zhang, Yu Liu
{"title":"Removal efficiency and adaptive response mechanisms of microalgal-bacterial granular sludge in treating chloramphenicol-laden wastewater","authors":"Yang Bai, Hua Liang, Bin Ji, Bingheng Chen, Anjie Li, Xiaoyuan Zhang, Yu Liu","doi":"10.1016/j.jhazmat.2025.137904","DOIUrl":null,"url":null,"abstract":"Efficient and eco-friendly technologies for removing antibiotic pollutants like chloramphenicol (CAP) from wastewater are becoming increasingly important. Among these, microalgal-bacterial granular sludge (MBGS) represents a promising green biotechnology capable of tackling such contaminants. However, the interactions between CAP and MBGS, as well as how CAP influences the community structure and function of MBGS, have not yet been fully understood. This study investigated the effectiveness of the MBGS system in CAP removal and examined microbial responses to CAP exposure. Our findings indicate that MBGS exhibits remarkable adaptability to CAP, altering its microbial characteristics to mitigate CAP toxicity while maintaining the efficacy of pollutant removal. Notably, there was a significant increase in key microorganisms such as <em>Hydrogenophaga</em>, <em>Polaromonas</em>, and <em>Acidovorax</em>. Additionally, the prevalence of resistance genes <em>cmlA8</em>, <em>floR</em>, <em>catB</em> and <em>cfr</em> under CAP exposure suggests adaptive mechanisms likely involving efflux pumps, CAP acetyltransferase B and ribosomal RNA methyltransferase. CAP degradation appears to proceed via the amide bond hydrolase estDL136, thereby reducing its toxicity and producing less harmful byproducts such as 2,2-dichloroacetic acid. This study provides new insights into how CAP affects MBGS communities and identifies the mechanisms for CAP degradation, offering valuable insights that MBGS could serve as an effective and environmentally sustainable technology for the treatment of wastewater containing antibiotic pollutants.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"91 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137904","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient and eco-friendly technologies for removing antibiotic pollutants like chloramphenicol (CAP) from wastewater are becoming increasingly important. Among these, microalgal-bacterial granular sludge (MBGS) represents a promising green biotechnology capable of tackling such contaminants. However, the interactions between CAP and MBGS, as well as how CAP influences the community structure and function of MBGS, have not yet been fully understood. This study investigated the effectiveness of the MBGS system in CAP removal and examined microbial responses to CAP exposure. Our findings indicate that MBGS exhibits remarkable adaptability to CAP, altering its microbial characteristics to mitigate CAP toxicity while maintaining the efficacy of pollutant removal. Notably, there was a significant increase in key microorganisms such as Hydrogenophaga, Polaromonas, and Acidovorax. Additionally, the prevalence of resistance genes cmlA8, floR, catB and cfr under CAP exposure suggests adaptive mechanisms likely involving efflux pumps, CAP acetyltransferase B and ribosomal RNA methyltransferase. CAP degradation appears to proceed via the amide bond hydrolase estDL136, thereby reducing its toxicity and producing less harmful byproducts such as 2,2-dichloroacetic acid. This study provides new insights into how CAP affects MBGS communities and identifies the mechanisms for CAP degradation, offering valuable insights that MBGS could serve as an effective and environmentally sustainable technology for the treatment of wastewater containing antibiotic pollutants.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
期刊最新文献
Enhancing Hydrogen Sulfide Control in Urban Sewer Systems Using Machine Learning Models: Development of a New Predictive Simulation Approach by using Boosting Algorithm Unraveling the roles of algal extracellular and intracellular organic matters in photosensitized degradation of tetracycline: Insights from triplet excited algal organic matters Aging properties of polymer pellets, release of secondary microplastics and additives in the water environment under laboratory-controlled conditions Stochastic and deterministic mechanisms jointly drive the assembly of microbial communities in cold-rolling wastewater across China In-situ reduction of heavy metal contaminated soil by hydrocyclone based on axial sorting of particles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1