Conditional generative adversarial network (cGAN) for generating building load profiles with photovoltaics and electric vehicles

IF 6.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Energy and Buildings Pub Date : 2025-03-09 DOI:10.1016/j.enbuild.2025.115584
Yuewei Li , Bing Dong , Yueming Qiu
{"title":"Conditional generative adversarial network (cGAN) for generating building load profiles with photovoltaics and electric vehicles","authors":"Yuewei Li ,&nbsp;Bing Dong ,&nbsp;Yueming Qiu","doi":"10.1016/j.enbuild.2025.115584","DOIUrl":null,"url":null,"abstract":"<div><div>Building load profiles are essential in research on building energy management, efficiency, demand response, and grid planning. With the growing adoption of solar photovoltaics (PV) and electric vehicles (EVs), integrated building load profiles are becoming increasingly important for effective management. However, current methods for generating building load profiles focus only on buildings without considering PV and/or EV adoptions. To address this gap, we propose using the conditional generative adversarial network (cGAN), a machine learning technique that generates realistic data conditioned on specific inputs, to create building load profiles that account for PV and EVs. This approach was tested using a smart meter dataset from a major metropolitan area in the southwest United States, containing years of hourly readings from 110 households with PV and EV adoptions. We extracted the key parameters that can describe the generated and real load profiles, and compared their mean and standard deviation to validate the results. KL divergence and FID scores were also used to compare the distributions. The results showed strong alignment between the generated and actual smart meter data across all PV, EV and seasonal conditions. The data under different combinations of PV, EV and weather conditions serve as conditional inputs for the cGAN, allowing it to generate building load profiles that maintain key statistical characteristics for both cooling and heating seasons, and various installation status of PV and EV. Additionally, this method safeguards customer privacy and reduces the effort needed for analyzing occupant behavior and building physics, which are typically required in physics-based energy models.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"335 ","pages":"Article 115584"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778825003147","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Building load profiles are essential in research on building energy management, efficiency, demand response, and grid planning. With the growing adoption of solar photovoltaics (PV) and electric vehicles (EVs), integrated building load profiles are becoming increasingly important for effective management. However, current methods for generating building load profiles focus only on buildings without considering PV and/or EV adoptions. To address this gap, we propose using the conditional generative adversarial network (cGAN), a machine learning technique that generates realistic data conditioned on specific inputs, to create building load profiles that account for PV and EVs. This approach was tested using a smart meter dataset from a major metropolitan area in the southwest United States, containing years of hourly readings from 110 households with PV and EV adoptions. We extracted the key parameters that can describe the generated and real load profiles, and compared their mean and standard deviation to validate the results. KL divergence and FID scores were also used to compare the distributions. The results showed strong alignment between the generated and actual smart meter data across all PV, EV and seasonal conditions. The data under different combinations of PV, EV and weather conditions serve as conditional inputs for the cGAN, allowing it to generate building load profiles that maintain key statistical characteristics for both cooling and heating seasons, and various installation status of PV and EV. Additionally, this method safeguards customer privacy and reduces the effort needed for analyzing occupant behavior and building physics, which are typically required in physics-based energy models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
期刊最新文献
Life cycle integrated multi-criteria decision model for roof assessment Cost-effective and low-carbon solutions for holistic rural building renovation in severe cold climate Circular deep renovation versus demolition with reconstruction: Environmental and financial evaluation to support decision making in the construction sector Cool wall claddings for a sustainable future: A comprehensive review on mitigating urban heat island effects and reducing carbon emissions in the built environment Design optimization of a composite typology based on RC columns and THVS girders to reduce economic cost, emissions, and embodied energy of frame building construction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1