Life cycle integrated multi-criteria decision model for roof assessment

IF 6.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Energy and Buildings Pub Date : 2025-03-17 DOI:10.1016/j.enbuild.2025.115628
Taylana Piccinini Scolaro, Enedir Ghisi
{"title":"Life cycle integrated multi-criteria decision model for roof assessment","authors":"Taylana Piccinini Scolaro,&nbsp;Enedir Ghisi","doi":"10.1016/j.enbuild.2025.115628","DOIUrl":null,"url":null,"abstract":"<div><div>Roofs significantly impact urban microclimates and indoor environments. However, selecting a suitable roof typology is complex due to environmental, social, and economic issues. This study aims to propose a method that comprises four parameters to support the selection of the most sustainable roof typology: life cycle energy assessment, urban heat island, life cycle cost analysis and thermal comfort. A top-floor flat in a multifamily residential building model with conventional (fibre cement), cool and green roofs, with and without thermal insulation, was used as a case study. The Brazilian climatic contexts of Florianópolis, Curitiba, and Brasília were considered. Computer simulations on EnergyPlus and data from the literature, technical specifications, a Brazilian database for quantifying materials and services and market prices were used to assess the roof typologies’ performance in each parameter. A questionnaire was applied to a panel of building experts to define the relative importance of each parameter. A multi-criteria decision-making (MCDM) method combining Analytic Hierarchy Process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) was used to weigh the parameters and select the most energy-sustainable roof alternative for each climatic context. The cool roof was the most sustainable in Florianópolis and Brasília, whereas the green roof was in Curitiba. Conventional roofs performed worst in all cities due to lower environmental and social efficiency. The method proposed herein offers valuable guidance for selecting energy-sustainable roofs and urban planning strategies, with adaptability to other roof typologies and countries, enabling tailored roof solutions for local conditions.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"336 ","pages":"Article 115628"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778825003585","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Roofs significantly impact urban microclimates and indoor environments. However, selecting a suitable roof typology is complex due to environmental, social, and economic issues. This study aims to propose a method that comprises four parameters to support the selection of the most sustainable roof typology: life cycle energy assessment, urban heat island, life cycle cost analysis and thermal comfort. A top-floor flat in a multifamily residential building model with conventional (fibre cement), cool and green roofs, with and without thermal insulation, was used as a case study. The Brazilian climatic contexts of Florianópolis, Curitiba, and Brasília were considered. Computer simulations on EnergyPlus and data from the literature, technical specifications, a Brazilian database for quantifying materials and services and market prices were used to assess the roof typologies’ performance in each parameter. A questionnaire was applied to a panel of building experts to define the relative importance of each parameter. A multi-criteria decision-making (MCDM) method combining Analytic Hierarchy Process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) was used to weigh the parameters and select the most energy-sustainable roof alternative for each climatic context. The cool roof was the most sustainable in Florianópolis and Brasília, whereas the green roof was in Curitiba. Conventional roofs performed worst in all cities due to lower environmental and social efficiency. The method proposed herein offers valuable guidance for selecting energy-sustainable roofs and urban planning strategies, with adaptability to other roof typologies and countries, enabling tailored roof solutions for local conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
期刊最新文献
Life cycle integrated multi-criteria decision model for roof assessment Cost-effective and low-carbon solutions for holistic rural building renovation in severe cold climate Circular deep renovation versus demolition with reconstruction: Environmental and financial evaluation to support decision making in the construction sector Cool wall claddings for a sustainable future: A comprehensive review on mitigating urban heat island effects and reducing carbon emissions in the built environment Design optimization of a composite typology based on RC columns and THVS girders to reduce economic cost, emissions, and embodied energy of frame building construction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1