Effects of green façade retrofitting on thermal performance and energy efficiency of existing buildings in northern China: An experimental study

IF 6.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Energy and Buildings Pub Date : 2025-03-07 DOI:10.1016/j.enbuild.2025.115550
Sun Qi , Nangkula Utaberta , Allen Lau Khin Kiet , Xu Yanfang , Han Xiyao
{"title":"Effects of green façade retrofitting on thermal performance and energy efficiency of existing buildings in northern China: An experimental study","authors":"Sun Qi ,&nbsp;Nangkula Utaberta ,&nbsp;Allen Lau Khin Kiet ,&nbsp;Xu Yanfang ,&nbsp;Han Xiyao","doi":"10.1016/j.enbuild.2025.115550","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, vertical greenery systems have gradually entered public attention, and more and more people are beginning to know it. This study aims to explore the impact of green façade retrofitting on building thermal performance and building energy consumption under hot summer conditions in northern China and to derive detailed data for future building energy efficiency retrofitting. This article used a comparative experiment to complete this research. Four laboratories of the same structure were constructed in Shandong Province, China. A movable metal frame was installed on the outside of the laboratory, and the green façades could be adjusted to direct green façades or indirect green façades according to the need of the experiment. In addition, two different plants were studied. This study was carried out under two experimental conditions: cooling and no cooling. The experiment was carried out from July to August 2024. According to the data obtained from the experiment, the green façade well reduced the surface temperature of the walls around the experimental room and the average temperature level in the room. The most significant temperature drop of 23.1 °C was observed on the surface of the external walls of the room with the indirect green façade covered with Parthenocissus quinquefolia. The data show that the average temperature in several experimental rooms decreased by 1–5 °C. The indirect green façade improves the thermal insulation of the building envelope better than the direct green façade. In the cooling experiments, the room with indirect green façades covered with Parthenocissus quinquefolia has the highest energy-saving rate of 45.75 %. However, the room with direct green façades covered with Humulus scandens only has an energy saving rate of 6.43 %.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"335 ","pages":"Article 115550"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778825002804","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, vertical greenery systems have gradually entered public attention, and more and more people are beginning to know it. This study aims to explore the impact of green façade retrofitting on building thermal performance and building energy consumption under hot summer conditions in northern China and to derive detailed data for future building energy efficiency retrofitting. This article used a comparative experiment to complete this research. Four laboratories of the same structure were constructed in Shandong Province, China. A movable metal frame was installed on the outside of the laboratory, and the green façades could be adjusted to direct green façades or indirect green façades according to the need of the experiment. In addition, two different plants were studied. This study was carried out under two experimental conditions: cooling and no cooling. The experiment was carried out from July to August 2024. According to the data obtained from the experiment, the green façade well reduced the surface temperature of the walls around the experimental room and the average temperature level in the room. The most significant temperature drop of 23.1 °C was observed on the surface of the external walls of the room with the indirect green façade covered with Parthenocissus quinquefolia. The data show that the average temperature in several experimental rooms decreased by 1–5 °C. The indirect green façade improves the thermal insulation of the building envelope better than the direct green façade. In the cooling experiments, the room with indirect green façades covered with Parthenocissus quinquefolia has the highest energy-saving rate of 45.75 %. However, the room with direct green façades covered with Humulus scandens only has an energy saving rate of 6.43 %.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
期刊最新文献
Lessons learnt from embodied GHG emission calculations in zero emission neighbourhoods (ZENs) from the Norwegian ZEN research centre Description of liquid–vapor transition behaviors in evaporative cooling technologies: A critical review Integration of aerial thermography and energy performance certificates for the estimation of energy consumption in cities Application of synthetic indices for thermal discomfort assessment in historical buildings according to the adaptive approach Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1