Description of liquid–vapor transition behaviors in evaporative cooling technologies: A critical review

IF 6.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Energy and Buildings Pub Date : 2025-03-22 DOI:10.1016/j.enbuild.2025.115646
Zhijun Tian , Yanfeng Liu , Yaowen Chen , Cong Song , Dengjia Wang
{"title":"Description of liquid–vapor transition behaviors in evaporative cooling technologies: A critical review","authors":"Zhijun Tian ,&nbsp;Yanfeng Liu ,&nbsp;Yaowen Chen ,&nbsp;Cong Song ,&nbsp;Dengjia Wang","doi":"10.1016/j.enbuild.2025.115646","DOIUrl":null,"url":null,"abstract":"<div><div>Evaporative cooling technology benefits from the substantial latent heat released during the liquid–vapor phase transition process. A comprehensive understanding of the physical nature of phase transition is fundamental to this technology. This review provides an analysis of the theoretical foundations of the liquid–vapor transition, drawing on thermodynamics, kinetic theory, and relevant practical formulas. Additionally, the pertinent knowledge of hydrodynamics, particularly the description of vapor transport, is summarized. Subsequently, current models are reviewed from the perspective of the interplay between the liquid–vapor transition and vapor transport processes. The descriptions and limitations of phase transition processes in these models are then discussed. According to these analyses, a key distinction in the description of the liquid–vapor transition lies in the presence or absence of evaporative mass flux. Kirchhoff-type formulas describe a macroscopic steady-state liquid–vapor transition in equilibrium. The use of these formulas negates external environmental influences on the transition process, including boundary layer effects. Hertz-Knudsen-type formulas capture the essence of the process, although they make overly strict assumptions about surface geometry. It is, therefore, recommended that these accommodation coefficients be verified experimentally. The enthalpy difference models, also known as Merkel models, impose additional isobaric constraints on the isothermal process, making them suitable for working conditions where pressure remains relatively constant throughout the process.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"336 ","pages":"Article 115646"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778825003767","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Evaporative cooling technology benefits from the substantial latent heat released during the liquid–vapor phase transition process. A comprehensive understanding of the physical nature of phase transition is fundamental to this technology. This review provides an analysis of the theoretical foundations of the liquid–vapor transition, drawing on thermodynamics, kinetic theory, and relevant practical formulas. Additionally, the pertinent knowledge of hydrodynamics, particularly the description of vapor transport, is summarized. Subsequently, current models are reviewed from the perspective of the interplay between the liquid–vapor transition and vapor transport processes. The descriptions and limitations of phase transition processes in these models are then discussed. According to these analyses, a key distinction in the description of the liquid–vapor transition lies in the presence or absence of evaporative mass flux. Kirchhoff-type formulas describe a macroscopic steady-state liquid–vapor transition in equilibrium. The use of these formulas negates external environmental influences on the transition process, including boundary layer effects. Hertz-Knudsen-type formulas capture the essence of the process, although they make overly strict assumptions about surface geometry. It is, therefore, recommended that these accommodation coefficients be verified experimentally. The enthalpy difference models, also known as Merkel models, impose additional isobaric constraints on the isothermal process, making them suitable for working conditions where pressure remains relatively constant throughout the process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Epigenetic Modifications in Cardiovascular Aging and Diseases.
IF 20.1 1区 材料科学ACS Energy Letters Pub Date : 2018-09-14 DOI: 10.1161/CIRCRESAHA.118.312497
Weiqi Zhang, Moshi Song, Jing Qu, Guang-Hui Liu
Understanding Dietary Intervention-Mediated Epigenetic Modifications in Metabolic Diseases.
IF 2.8 ACS Applied Bio MaterialsPub Date : 2020-10-15 DOI: 10.3389/fgene.2020.590369
Shaza Asif, Nadya M Morrow, Erin E Mulvihill, Kyoung-Han Kim
[Epigenetic modifications and cardiovascular diseases : new Eldorado].
IF 0 Revue medicale suissePub Date : 2024-03-06 DOI: 10.53738/REVMED.2024.20.864.496
Olivier Emery, David Nanchen, Jonviea Chamberlain
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
期刊最新文献
In-depth sensitivity analysis of heating demand and overheating in Dutch terraced houses using interpretable machine learning On-Site temperature and irradiance forecast tuning for improved load prediction in buildings Explaining building energy efficiency prediction through architectural and engineering solutions considering environmental impacts using a hybrid model Unsupervised domain adaptation for HVAC fault diagnosis using contrastive adaptation network Development of representative city region models for south China’s Pearl River Delta: Data statistics and model definition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1