Ying Guo , Qingfeng Fan , Jianjun Ma , Yinghao Sun , Wei Zhang , Liqiang Sun , Chunbao Xiong
{"title":"Dynamic response on coupled thermo-hydro-mechanical problem for two-dimensional saturated soil under fractional order thermoelastic theory","authors":"Ying Guo , Qingfeng Fan , Jianjun Ma , Yinghao Sun , Wei Zhang , Liqiang Sun , Chunbao Xiong","doi":"10.1016/j.ijheatmasstransfer.2025.126933","DOIUrl":null,"url":null,"abstract":"<div><div>To better characterize the intricate coupled thermo-hydro-mechanical dynamic (THMD) response in two-dimensional saturated soil and to enrich the research object of Green-Naghdi (G-N) generalized thermoelastic theory, this study innovatively combines the G-N generalized thermoelastic theory and Caputo's fractional order derivative, to obtain the new control equations, and to establish a new fractional order thermoelastic theoretical model. The article is solved by the normal mode analysis (NMA), which can eliminate the integration error and solve the complex fractional order partial differential control equations quickly at the same time. The effects of different boundary conditions of fractional order derivatives, porosity, frequency, and thermal conductivity coefficients on non-dimensional excess pore water pressure, temperature, vertical displacement, and vertical stress are also fully analyzed, and the distribution curves of high precision numerical solutions are given. The results show that the effect of frequency variation on each non-dimensional variable is obvious. The effects of fractional order derivatives, porosity and thermal conductivity coefficients on the non-dimensional variables vary depending on the boundary conditions. The results provide theoretical support for geotechnical and environmental engineering.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"244 ","pages":"Article 126933"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025002741","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To better characterize the intricate coupled thermo-hydro-mechanical dynamic (THMD) response in two-dimensional saturated soil and to enrich the research object of Green-Naghdi (G-N) generalized thermoelastic theory, this study innovatively combines the G-N generalized thermoelastic theory and Caputo's fractional order derivative, to obtain the new control equations, and to establish a new fractional order thermoelastic theoretical model. The article is solved by the normal mode analysis (NMA), which can eliminate the integration error and solve the complex fractional order partial differential control equations quickly at the same time. The effects of different boundary conditions of fractional order derivatives, porosity, frequency, and thermal conductivity coefficients on non-dimensional excess pore water pressure, temperature, vertical displacement, and vertical stress are also fully analyzed, and the distribution curves of high precision numerical solutions are given. The results show that the effect of frequency variation on each non-dimensional variable is obvious. The effects of fractional order derivatives, porosity and thermal conductivity coefficients on the non-dimensional variables vary depending on the boundary conditions. The results provide theoretical support for geotechnical and environmental engineering.
期刊介绍:
International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems.
Topics include:
-New methods of measuring and/or correlating transport-property data
-Energy engineering
-Environmental applications of heat and/or mass transfer