Dual-grained size effect induced simultaneous enhancement of hardness-strength-toughness in TaC-modified Ti(C, N)-based cermets

IF 4.2 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Refractory Metals & Hard Materials Pub Date : 2025-03-06 DOI:10.1016/j.ijrmhm.2025.107135
Sheng-Jian Zhou , Jia-Hu Ouyang , Wen-Tao Su , Jing-Xin Tian , Xiang-Rui Kong , Chen-Guang Xu , Ying Li , Yu-Jin Wang , Lei Chen , Yu Zhou
{"title":"Dual-grained size effect induced simultaneous enhancement of hardness-strength-toughness in TaC-modified Ti(C, N)-based cermets","authors":"Sheng-Jian Zhou ,&nbsp;Jia-Hu Ouyang ,&nbsp;Wen-Tao Su ,&nbsp;Jing-Xin Tian ,&nbsp;Xiang-Rui Kong ,&nbsp;Chen-Guang Xu ,&nbsp;Ying Li ,&nbsp;Yu-Jin Wang ,&nbsp;Lei Chen ,&nbsp;Yu Zhou","doi":"10.1016/j.ijrmhm.2025.107135","DOIUrl":null,"url":null,"abstract":"<div><div>A trade-off is required to balance the hardness, strength and toughness of Ti(C, N)-based cermets, which remains a significant challenge due to the inherent contradiction between hardness (or strength) and toughness. In this work, a simple powder metallurgy process was used to prepare Ti(C, N)-based cermets with a dual-grained structure by refractory TaC modification and raw powder grading strategy. The microstructure formation process and synergistic enhancement mechanism of hardness, strength and toughness in the dual-grained Ti(C, N)-based cermets were elucidated. The formation of a dual-grained structure is attributed to selective dissolution and reprecipitation resulting from the difference in chemical potentials of both various carbonitrides and different-sized particles. As compared with conventional Ti(C, N)-based cermets prepared by only using submicron-sized raw powders, the dual-grained Ti(C, N)-based cermets modified by TaC achieve a distinct increase in Vickers hardness of about 14 %, in flexural strength of about 25 %, and in fracture toughness of 6 %. The hardness-toughness trade-off is significantly superior to those of conventional submicron-sized Ti(C, N)-based cermets using the same sintering method and even commercial Ti(C, N)-based cermets. This work offers a simple, novel and low-cost method to develop metal-ceramic composites with simultaneous enhancement of hardness, strength and toughness.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"130 ","pages":"Article 107135"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825001003","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A trade-off is required to balance the hardness, strength and toughness of Ti(C, N)-based cermets, which remains a significant challenge due to the inherent contradiction between hardness (or strength) and toughness. In this work, a simple powder metallurgy process was used to prepare Ti(C, N)-based cermets with a dual-grained structure by refractory TaC modification and raw powder grading strategy. The microstructure formation process and synergistic enhancement mechanism of hardness, strength and toughness in the dual-grained Ti(C, N)-based cermets were elucidated. The formation of a dual-grained structure is attributed to selective dissolution and reprecipitation resulting from the difference in chemical potentials of both various carbonitrides and different-sized particles. As compared with conventional Ti(C, N)-based cermets prepared by only using submicron-sized raw powders, the dual-grained Ti(C, N)-based cermets modified by TaC achieve a distinct increase in Vickers hardness of about 14 %, in flexural strength of about 25 %, and in fracture toughness of 6 %. The hardness-toughness trade-off is significantly superior to those of conventional submicron-sized Ti(C, N)-based cermets using the same sintering method and even commercial Ti(C, N)-based cermets. This work offers a simple, novel and low-cost method to develop metal-ceramic composites with simultaneous enhancement of hardness, strength and toughness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
13.90%
发文量
236
审稿时长
35 days
期刊介绍: The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.
期刊最新文献
Wear mechanisms and crack-healing mechanisms of Ti(C,N)-(W,Ti)C-TiSi2 gradient cermet tool in dry turning of 17-4PH stainless steel Tantalum coatings formed on titanium by electrospark deposition with computer numerical control in a controlled gas environment The CuNb alloys prepared by laser directed energy deposition: Effect of Ti addition on microstructure and properties Editorial Board Investigation of residual stress distribution in wire-arc directed energy deposited refractory molybdenum alloy utilizing numerical thermo-mechanical analysis and neutron diffraction method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1