Acquisition of object and temperature series in medium resolution off-axis electron holography with live drift correction

IF 2.1 3区 工程技术 Q2 MICROSCOPY Ultramicroscopy Pub Date : 2025-03-04 DOI:10.1016/j.ultramic.2025.114119
Thibaud Denneulin, Benjamin Zingsem, Joseph Vas, Wen Shi, Luyan Yang, Michael Feuerbacher, Rafal E. Dunin-Borkowski
{"title":"Acquisition of object and temperature series in medium resolution off-axis electron holography with live drift correction","authors":"Thibaud Denneulin,&nbsp;Benjamin Zingsem,&nbsp;Joseph Vas,&nbsp;Wen Shi,&nbsp;Luyan Yang,&nbsp;Michael Feuerbacher,&nbsp;Rafal E. Dunin-Borkowski","doi":"10.1016/j.ultramic.2025.114119","DOIUrl":null,"url":null,"abstract":"<div><div>Collecting and averaging large datasets is a common practice in transmission electron microscopy to improve the signal-to-noise ratio. Averaging data in off-axis electron holography requires automated tools capable of correcting both the drift of the interference fringes and the drift of the specimen. This can be achieved either off-line, by post-processing hologram series, or on-line, through real-time microscope control. For on-line correction, a previously suggested method involves independently adjusting the position of the intereference fringes and the sample by controlling the beam tilt coils and the stage during hologram acquisition. In this study, we have implemented this on-line correction method in a Thermo Fisher Scientific Titan transmission electron microscope. The microscope is equipped with a piezo-enhanced CompuStage for positioning the sample with high precision. However, the control of the piezo stage via direct scripting is not supported. We first describe a workaround to enable automated sample position correction. We then demonstrate the benefits of live, program-controlled acquisitions for serial experiments in medium resolution off-axis electron holography. Application examples include the automatic acquisition of an object series such as a transistor array and an <em>in-situ</em> temperature series of magnetic skyrmions.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"271 ","pages":"Article 114119"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030439912500018X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Collecting and averaging large datasets is a common practice in transmission electron microscopy to improve the signal-to-noise ratio. Averaging data in off-axis electron holography requires automated tools capable of correcting both the drift of the interference fringes and the drift of the specimen. This can be achieved either off-line, by post-processing hologram series, or on-line, through real-time microscope control. For on-line correction, a previously suggested method involves independently adjusting the position of the intereference fringes and the sample by controlling the beam tilt coils and the stage during hologram acquisition. In this study, we have implemented this on-line correction method in a Thermo Fisher Scientific Titan transmission electron microscope. The microscope is equipped with a piezo-enhanced CompuStage for positioning the sample with high precision. However, the control of the piezo stage via direct scripting is not supported. We first describe a workaround to enable automated sample position correction. We then demonstrate the benefits of live, program-controlled acquisitions for serial experiments in medium resolution off-axis electron holography. Application examples include the automatic acquisition of an object series such as a transistor array and an in-situ temperature series of magnetic skyrmions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultramicroscopy
Ultramicroscopy 工程技术-显微镜技术
CiteScore
4.60
自引率
13.60%
发文量
117
审稿时长
5.3 months
期刊介绍: Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.
期刊最新文献
Dynamical diffraction effects of inhomogeneous strain fields investigated by scanning convergent electron beam diffraction and dark field electron holography aquaDenoising: AI-enhancement of in situ liquid phase STEM video for automated quantification of nanoparticles growth Acquisition of object and temperature series in medium resolution off-axis electron holography with live drift correction Negative stain TEM imaging of native spider silk protein superstructures Quantifying elemental colocation in nanostructured materials using energy-dispersive X-ray spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1