Development and validation of an interpretable machine learning model for predicting in-hospital mortality for ischemic stroke patients in ICU

IF 3.7 2区 医学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Medical Informatics Pub Date : 2025-03-09 DOI:10.1016/j.ijmedinf.2025.105874
Xiao Luo , Binghan Li , Ronghui Zhu , Yaoyong Tai , Zongyu Wang , Qian He , Yanfang Zhao , Xiaoying Bi , Cheng Wu
{"title":"Development and validation of an interpretable machine learning model for predicting in-hospital mortality for ischemic stroke patients in ICU","authors":"Xiao Luo ,&nbsp;Binghan Li ,&nbsp;Ronghui Zhu ,&nbsp;Yaoyong Tai ,&nbsp;Zongyu Wang ,&nbsp;Qian He ,&nbsp;Yanfang Zhao ,&nbsp;Xiaoying Bi ,&nbsp;Cheng Wu","doi":"10.1016/j.ijmedinf.2025.105874","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Timely and accurate outcome prediction is essential for clinical decision-making for ischemic stroke patients in the intensive care unit (ICU). However, the interpretation and translation of predictive models into clinical applications are equally crucial. This study aims to develop an interpretable machine learning (IML) model that effectively predicts in-hospital mortality for ischemic stroke patients.</div></div><div><h3>Methods</h3><div>In this study, an IML model was developed and validated using multicenter cohorts of 3225 ischemic stroke patients admitted to the ICU. Nine machine learning (ML) models, including logistic regression (LR), K-nearest neighbors (KNN), naive Bayes (NB), decision tree (DT), support vector machine (SVM), random forest (RF), XGBoost, LightGBM, and artificial neural network (ANN), were developed to predict in-hospital mortality using data from the MIMIC-IV and externally validated in Shanghai Changhai Hospital. Feature selection was conducted using three algorithms. Model’s performance was assessed using area under the receiver operating characteristic (AUROC), accuracy, sensitivity, specificity and F1 score. Calibration curve and Brier score were used to evaluate the degree of calibration of the model, and decision curve analysis were generated to assess the net clinical benefit. Additionally, the SHapley Additive exPlanations (SHAP) method was employed to evaluate the risk of in-hospital mortality among ischemic stroke patients admitted to the ICU.</div></div><div><h3>Results</h3><div>Mechanical ventilation, age, statins, white blood cell, blood urea nitrogen, hematocrit, warfarin, bicarbonate and systolic blood pressure were selected as the nine most influential variables. The RF model demonstrated the most robust predictive performance, achieving AUROC values of 0.908 and 0.858 in the testing set and external validation set, respectively. Calibration curves also revealed a high consistency between observations and predictions. Decision curve analysis showed that the model had the greatest net benefit rate when the prediction probability threshold is 0.10 ∼ 0.80. SHAP was employed to interpret the RF model. In addition, we have developed an online prediction calculator for ischemic stroke patients.</div></div><div><h3>Conclusion</h3><div>This study develops a machine learning–based calculator to predict the probability of in-hospital mortality among patients with ischemic stroke in ICU. The calculator has the potential to guide clinical decision-making and improve the care of patients with ischemic stroke by identifying patients at a higher risk of in-hospital mortality.</div></div>","PeriodicalId":54950,"journal":{"name":"International Journal of Medical Informatics","volume":"198 ","pages":"Article 105874"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386505625000917","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Timely and accurate outcome prediction is essential for clinical decision-making for ischemic stroke patients in the intensive care unit (ICU). However, the interpretation and translation of predictive models into clinical applications are equally crucial. This study aims to develop an interpretable machine learning (IML) model that effectively predicts in-hospital mortality for ischemic stroke patients.

Methods

In this study, an IML model was developed and validated using multicenter cohorts of 3225 ischemic stroke patients admitted to the ICU. Nine machine learning (ML) models, including logistic regression (LR), K-nearest neighbors (KNN), naive Bayes (NB), decision tree (DT), support vector machine (SVM), random forest (RF), XGBoost, LightGBM, and artificial neural network (ANN), were developed to predict in-hospital mortality using data from the MIMIC-IV and externally validated in Shanghai Changhai Hospital. Feature selection was conducted using three algorithms. Model’s performance was assessed using area under the receiver operating characteristic (AUROC), accuracy, sensitivity, specificity and F1 score. Calibration curve and Brier score were used to evaluate the degree of calibration of the model, and decision curve analysis were generated to assess the net clinical benefit. Additionally, the SHapley Additive exPlanations (SHAP) method was employed to evaluate the risk of in-hospital mortality among ischemic stroke patients admitted to the ICU.

Results

Mechanical ventilation, age, statins, white blood cell, blood urea nitrogen, hematocrit, warfarin, bicarbonate and systolic blood pressure were selected as the nine most influential variables. The RF model demonstrated the most robust predictive performance, achieving AUROC values of 0.908 and 0.858 in the testing set and external validation set, respectively. Calibration curves also revealed a high consistency between observations and predictions. Decision curve analysis showed that the model had the greatest net benefit rate when the prediction probability threshold is 0.10 ∼ 0.80. SHAP was employed to interpret the RF model. In addition, we have developed an online prediction calculator for ischemic stroke patients.

Conclusion

This study develops a machine learning–based calculator to predict the probability of in-hospital mortality among patients with ischemic stroke in ICU. The calculator has the potential to guide clinical decision-making and improve the care of patients with ischemic stroke by identifying patients at a higher risk of in-hospital mortality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Medical Informatics
International Journal of Medical Informatics 医学-计算机:信息系统
CiteScore
8.90
自引率
4.10%
发文量
217
审稿时长
42 days
期刊介绍: International Journal of Medical Informatics provides an international medium for dissemination of original results and interpretative reviews concerning the field of medical informatics. The Journal emphasizes the evaluation of systems in healthcare settings. The scope of journal covers: Information systems, including national or international registration systems, hospital information systems, departmental and/or physician''s office systems, document handling systems, electronic medical record systems, standardization, systems integration etc.; Computer-aided medical decision support systems using heuristic, algorithmic and/or statistical methods as exemplified in decision theory, protocol development, artificial intelligence, etc. Educational computer based programs pertaining to medical informatics or medicine in general; Organizational, economic, social, clinical impact, ethical and cost-benefit aspects of IT applications in health care.
期刊最新文献
Online professionalism through the lens of medical students and residents: A focus group study Evaluating AI-generated patient education materials for spinal surgeries: Comparative analysis of readability and DISCERN quality across ChatGPT and deepseek models AI-based personalized real-time risk prediction for behavioral management in psychiatric wards using multimodal data Impact of patients’ personality traits on digital health Adoption Strategies for family practices Development and validation of an interpretable machine learning model for predicting in-hospital mortality for ischemic stroke patients in ICU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1