AI-based personalized real-time risk prediction for behavioral management in psychiatric wards using multimodal data

IF 3.7 2区 医学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Medical Informatics Pub Date : 2025-03-12 DOI:10.1016/j.ijmedinf.2025.105870
Ri-Ra Kang , Yong-gyom Kim , Minseok Hong , Yong Min Ahn , KangYoon Lee
{"title":"AI-based personalized real-time risk prediction for behavioral management in psychiatric wards using multimodal data","authors":"Ri-Ra Kang ,&nbsp;Yong-gyom Kim ,&nbsp;Minseok Hong ,&nbsp;Yong Min Ahn ,&nbsp;KangYoon Lee","doi":"10.1016/j.ijmedinf.2025.105870","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Suicide is a major global health issue, with approximately 700,000 deaths annually (WHO). In psychiatric wards, managing harmful behaviors such as suicide, self-harm, and aggression is essential to ensure patient and staff safety. However, psychiatric wards in South Korea face challenges due to high patient-to-psychiatrist ratios and heavy workloads. Current models relying on demographic data struggle to provide real-time predictions. This study introduces the Temporal Fusion Transformer (TFT) model to address these limitations by integrating sensor, location, and clinical data for predicting harmful behaviors. The TFT model’s advanced features, such as Variable Selection Networks and temporal attention mechanisms, make it particularly suitable for capturing complex time-series patterns and providing interpretable results in psychiatric settings.</div></div><div><h3>Methods</h3><div>Data from 145 patients across three hospitals were collected using wearable devices that tracked heart rate, movement, and location. The data were aggregated hourly, preprocessed to handle missing values, and standardized. A binary classification model using TFT was developed and evaluated with accuracy, recall, F1 score, and AUC. Bayesian optimization was employed for hyperparameter tuning, and 5-fold cross-validation was performed to ensure generalizability.</div></div><div><h3>Results</h3><div>The TFT model outperformed Multi-LSTM and Multi-GRU models, achieving 95.1% accuracy, 74.9% recall, an F1 score of 78.1, and an AUC of 0.863. The Variable Selection Network effectively identified key predictive factors, such as daily entropy and heart rate variability, improving interpretability. Incorporating location and biometric data enhanced prediction accuracy and enabled real-time risk assessments.</div></div><div><h3>Conclusion</h3><div>This study is the first to use the TFT model for predicting behavioral risks in psychiatric wards. The model’s ability to integrate diverse data sources, prioritize cirtical variables, and capture temporal dependencies make it highly suitable for psychiatric environments. While the TFT model performed well, challenges remain with recall due to the limited dataset. Future research will focus on expanding datasets, optimizing variable selection, and standardizing data through a multimodal Common Data Model (CDM) to further improve performance and clinical utility.</div></div>","PeriodicalId":54950,"journal":{"name":"International Journal of Medical Informatics","volume":"198 ","pages":"Article 105870"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386505625000875","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Suicide is a major global health issue, with approximately 700,000 deaths annually (WHO). In psychiatric wards, managing harmful behaviors such as suicide, self-harm, and aggression is essential to ensure patient and staff safety. However, psychiatric wards in South Korea face challenges due to high patient-to-psychiatrist ratios and heavy workloads. Current models relying on demographic data struggle to provide real-time predictions. This study introduces the Temporal Fusion Transformer (TFT) model to address these limitations by integrating sensor, location, and clinical data for predicting harmful behaviors. The TFT model’s advanced features, such as Variable Selection Networks and temporal attention mechanisms, make it particularly suitable for capturing complex time-series patterns and providing interpretable results in psychiatric settings.

Methods

Data from 145 patients across three hospitals were collected using wearable devices that tracked heart rate, movement, and location. The data were aggregated hourly, preprocessed to handle missing values, and standardized. A binary classification model using TFT was developed and evaluated with accuracy, recall, F1 score, and AUC. Bayesian optimization was employed for hyperparameter tuning, and 5-fold cross-validation was performed to ensure generalizability.

Results

The TFT model outperformed Multi-LSTM and Multi-GRU models, achieving 95.1% accuracy, 74.9% recall, an F1 score of 78.1, and an AUC of 0.863. The Variable Selection Network effectively identified key predictive factors, such as daily entropy and heart rate variability, improving interpretability. Incorporating location and biometric data enhanced prediction accuracy and enabled real-time risk assessments.

Conclusion

This study is the first to use the TFT model for predicting behavioral risks in psychiatric wards. The model’s ability to integrate diverse data sources, prioritize cirtical variables, and capture temporal dependencies make it highly suitable for psychiatric environments. While the TFT model performed well, challenges remain with recall due to the limited dataset. Future research will focus on expanding datasets, optimizing variable selection, and standardizing data through a multimodal Common Data Model (CDM) to further improve performance and clinical utility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Medical Informatics
International Journal of Medical Informatics 医学-计算机:信息系统
CiteScore
8.90
自引率
4.10%
发文量
217
审稿时长
42 days
期刊介绍: International Journal of Medical Informatics provides an international medium for dissemination of original results and interpretative reviews concerning the field of medical informatics. The Journal emphasizes the evaluation of systems in healthcare settings. The scope of journal covers: Information systems, including national or international registration systems, hospital information systems, departmental and/or physician''s office systems, document handling systems, electronic medical record systems, standardization, systems integration etc.; Computer-aided medical decision support systems using heuristic, algorithmic and/or statistical methods as exemplified in decision theory, protocol development, artificial intelligence, etc. Educational computer based programs pertaining to medical informatics or medicine in general; Organizational, economic, social, clinical impact, ethical and cost-benefit aspects of IT applications in health care.
期刊最新文献
Online professionalism through the lens of medical students and residents: A focus group study Evaluating AI-generated patient education materials for spinal surgeries: Comparative analysis of readability and DISCERN quality across ChatGPT and deepseek models AI-based personalized real-time risk prediction for behavioral management in psychiatric wards using multimodal data Impact of patients’ personality traits on digital health Adoption Strategies for family practices Development and validation of an interpretable machine learning model for predicting in-hospital mortality for ischemic stroke patients in ICU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1