Junkai Ge , Huaifeng Sun , Rui Liu , Zhiyou Huang , Bo Tian , Lanbo Liu , Ziqiang Zheng
{"title":"Permafrost thawing characterization in engineering scale by multi-geophysical methods: A case study from the Tibet Plateau","authors":"Junkai Ge , Huaifeng Sun , Rui Liu , Zhiyou Huang , Bo Tian , Lanbo Liu , Ziqiang Zheng","doi":"10.1016/j.enggeo.2025.108012","DOIUrl":null,"url":null,"abstract":"<div><div>The freeze-thaw cycles in permafrost regions significantly impact infrastructure stability. While satellite sensing provides a broad perspective for engineering site selection, it lacks the in-depth assessments. Geophysical methods can effectively provide valuable insights into the states of permafrost thawing, but any single method has limitations. To address this, we applied an integrated geophysical approach using ground-penetrating radar (GPR), electrical resistivity tomography (ERT), ambient-noise seismic interferometry (ANSI), and Unmanned Aerial Vehicle (UAV)-based infrared imaging to assess permafrost conditions in the Tuotuo River Basin, Qinghai-Tibet Plateau. Our multi-method survey delineated thawed zones and active layers. The results revealed that a large-scale thawed zone was primarily caused by surface heat absorption, rain infiltration, and sandy soil conditions. We also evaluated the strengths and limitations of each geophysical method, demonstrating their complementarity in permafrost detection. These findings provide a valuable reference for geophysical site assessments and help mitigate engineering risks in permafrost areas.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"350 ","pages":"Article 108012"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795225001085","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The freeze-thaw cycles in permafrost regions significantly impact infrastructure stability. While satellite sensing provides a broad perspective for engineering site selection, it lacks the in-depth assessments. Geophysical methods can effectively provide valuable insights into the states of permafrost thawing, but any single method has limitations. To address this, we applied an integrated geophysical approach using ground-penetrating radar (GPR), electrical resistivity tomography (ERT), ambient-noise seismic interferometry (ANSI), and Unmanned Aerial Vehicle (UAV)-based infrared imaging to assess permafrost conditions in the Tuotuo River Basin, Qinghai-Tibet Plateau. Our multi-method survey delineated thawed zones and active layers. The results revealed that a large-scale thawed zone was primarily caused by surface heat absorption, rain infiltration, and sandy soil conditions. We also evaluated the strengths and limitations of each geophysical method, demonstrating their complementarity in permafrost detection. These findings provide a valuable reference for geophysical site assessments and help mitigate engineering risks in permafrost areas.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.