Shanlin Xu, Lingkai Hu, Honglei Sun, Bo Wang, Feng Gao, Mingyuan Wang
{"title":"Investigating peak strength of gap-graded soils through discrete element method: mechanisms and prediction","authors":"Shanlin Xu, Lingkai Hu, Honglei Sun, Bo Wang, Feng Gao, Mingyuan Wang","doi":"10.1007/s10035-025-01511-0","DOIUrl":null,"url":null,"abstract":"<div><p>Gap-graded soils, extensively utilized in geotechnical and hydraulic engineering, exhibit diverse strength characteristics governed by their distinctive particle size distribution (PSD). To investigate the influence of PSD on the shear strength of gap-graded soils, this study utilizes the Discrete Element Method (DEM) to reproduce drained conventional triaxial tests of gap-graded soils across a wide range of fine particle content (FC = 1-40%) and particle size ratio (SR = 2.5-6.0). The simulation results reveal that the peak shear strength follows a characteristic unimodal curve versus FC, attaining its maximum value at about FC = 25%. SR governs peak strength through critical FC thresholds: negligible impact at FC < 10%, whereas significant enhancement occurs at FC = 25%. Micromechanical analysis reveals that branch anisotropy evolution controls strength behaviour. Shear strength inversely correlates with peak branch anisotropy as reduced branch anisotropy promotes homogenized contact force distribution. FC and SR collectively regulate macroscopic strength through coupled control of branch anisotropy evolution, where their synergistic interaction governs force chain reorganization and stress distribution homogeneity. Based on these insights, a novel predictive formula for peak strength incorporating both SR and FC were proposed, providing guidance for optimized deployment of gap-graded soils in engineering practice.</p></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-025-01511-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Gap-graded soils, extensively utilized in geotechnical and hydraulic engineering, exhibit diverse strength characteristics governed by their distinctive particle size distribution (PSD). To investigate the influence of PSD on the shear strength of gap-graded soils, this study utilizes the Discrete Element Method (DEM) to reproduce drained conventional triaxial tests of gap-graded soils across a wide range of fine particle content (FC = 1-40%) and particle size ratio (SR = 2.5-6.0). The simulation results reveal that the peak shear strength follows a characteristic unimodal curve versus FC, attaining its maximum value at about FC = 25%. SR governs peak strength through critical FC thresholds: negligible impact at FC < 10%, whereas significant enhancement occurs at FC = 25%. Micromechanical analysis reveals that branch anisotropy evolution controls strength behaviour. Shear strength inversely correlates with peak branch anisotropy as reduced branch anisotropy promotes homogenized contact force distribution. FC and SR collectively regulate macroscopic strength through coupled control of branch anisotropy evolution, where their synergistic interaction governs force chain reorganization and stress distribution homogeneity. Based on these insights, a novel predictive formula for peak strength incorporating both SR and FC were proposed, providing guidance for optimized deployment of gap-graded soils in engineering practice.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.