Towards Enhanced Solubility of Cannabidiol: Preparation and Evaluation of Cannabidiol Solid Dispersions Using Vacuum Compression Molding

IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY AAPS PharmSciTech Pub Date : 2025-03-11 DOI:10.1208/s12249-025-03078-8
Achref Cherif, Janhavi Deshmukh, Kavish Sanil, Iman Taha, Daniel Treffer, Eman A. Ashour
{"title":"Towards Enhanced Solubility of Cannabidiol: Preparation and Evaluation of Cannabidiol Solid Dispersions Using Vacuum Compression Molding","authors":"Achref Cherif,&nbsp;Janhavi Deshmukh,&nbsp;Kavish Sanil,&nbsp;Iman Taha,&nbsp;Daniel Treffer,&nbsp;Eman A. Ashour","doi":"10.1208/s12249-025-03078-8","DOIUrl":null,"url":null,"abstract":"<div><p>The present study aims to develop and characterize cannabidiol (CBD) solid dispersions using Vacuum Compression Molding (VCM) to enhance the drug solubility and release profile. Solid dispersions of CBD and polymers were processed using VCM at 130 °C for 4 min after a prior physical mixing. Five percent w/w of CBD was used with 5% w/w of poloxamer 188 and 90% w/w of polymeric carrier (Polyethylene Oxide, PEO-N80 or Hydroxypropyl cellulose, HPCEF). Discs were collected and milled to obtain formulations (F1V, F2V). The degradation temperature of CBD was determined using Thermogravimetric Analysis (TGA). The formulations were further characterized using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and Fourier-Transform Infrared Spectroscopy (FTIR). <i>In vitro</i> dissolution testing of pure CBD and formulations was evaluated using USP apparatus II. TGA showed that CBD degradation occurs after 200 °C. FTIR spectra of formulations indicate potential interactions between the drug and polymers. DSC thermograms of F1V showed a thermal peak at 65 °C that could correspond to PEO-N80. F2V did not show any of the thermal event peaks, which suggests the conversion of the drug to the amorphous state. Images from the SEM showed irregular surfaces for both formulations. The release profile showed an increase in the CBD dissolution rate by 4.75 folds for F1V and 3.63 folds for F2V in four hours. In this study, solid dispersions of CBD formulations were successfully achieved. The VCM technology has proven to be successful in formulating solid dispersions of CBD for early-stage drug development.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1208/s12249-025-03078-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-025-03078-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The present study aims to develop and characterize cannabidiol (CBD) solid dispersions using Vacuum Compression Molding (VCM) to enhance the drug solubility and release profile. Solid dispersions of CBD and polymers were processed using VCM at 130 °C for 4 min after a prior physical mixing. Five percent w/w of CBD was used with 5% w/w of poloxamer 188 and 90% w/w of polymeric carrier (Polyethylene Oxide, PEO-N80 or Hydroxypropyl cellulose, HPCEF). Discs were collected and milled to obtain formulations (F1V, F2V). The degradation temperature of CBD was determined using Thermogravimetric Analysis (TGA). The formulations were further characterized using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and Fourier-Transform Infrared Spectroscopy (FTIR). In vitro dissolution testing of pure CBD and formulations was evaluated using USP apparatus II. TGA showed that CBD degradation occurs after 200 °C. FTIR spectra of formulations indicate potential interactions between the drug and polymers. DSC thermograms of F1V showed a thermal peak at 65 °C that could correspond to PEO-N80. F2V did not show any of the thermal event peaks, which suggests the conversion of the drug to the amorphous state. Images from the SEM showed irregular surfaces for both formulations. The release profile showed an increase in the CBD dissolution rate by 4.75 folds for F1V and 3.63 folds for F2V in four hours. In this study, solid dispersions of CBD formulations were successfully achieved. The VCM technology has proven to be successful in formulating solid dispersions of CBD for early-stage drug development.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
AAPS PharmSciTech
AAPS PharmSciTech 医学-药学
CiteScore
6.80
自引率
3.00%
发文量
264
审稿时长
2.4 months
期刊介绍: AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.
期刊最新文献
Amorphous Solid Dispersion/Salt of Efavirenz: Investigating the Role of Molecular Interactions on Recrystallization and In-vitro Dissolution Performance Quantitative Analysis of Salmon Calcitonin Hydroxyapatite Nanoparticle Permeation to substantiate Non-Invasive Bone Targeting via Sublingual Delivery Development and Optimization of Eberconazole Nanostructured Lipid Carrier Topical Formulations Based on the QbD Approach Brazilian Green Propolis Extract-Loaded Poly(Ε-Caprolactone) Nanoparticles Coated with Hyaluronic Acid: Antifungal Activity in a Murine Model of Vulvovaginal Candidiasis Unraveling the Effects of Filtration, Process Interruptions, and Post-Process Agitation on Protein Aggregation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1