Quantitative Analysis of Salmon Calcitonin Hydroxyapatite Nanoparticle Permeation to substantiate Non-Invasive Bone Targeting via Sublingual Delivery

IF 3.4 4区 医学 Q2 PHARMACOLOGY & PHARMACY AAPS PharmSciTech Pub Date : 2025-03-18 DOI:10.1208/s12249-025-03068-w
Darsheen Kotak, Esha Attar, Bhavik Dalal, Aruna Shankarkumar, Padma Devarajan
{"title":"Quantitative Analysis of Salmon Calcitonin Hydroxyapatite Nanoparticle Permeation to substantiate Non-Invasive Bone Targeting via Sublingual Delivery","authors":"Darsheen Kotak,&nbsp;Esha Attar,&nbsp;Bhavik Dalal,&nbsp;Aruna Shankarkumar,&nbsp;Padma Devarajan","doi":"10.1208/s12249-025-03068-w","DOIUrl":null,"url":null,"abstract":"<div><p>We earlier reported comparable efficacy in bone parameters of sublingually administered salmon calcitonin hydroxyapatite nanoparticles (SCT-HAP-NPs) compared to the subcutaneous injection, in the ovariectomy rat model, despite a bioavailability of barely ~ 15%. We ascribed this intriguing finding to targeted bone delivery, facilitated by translocation of significant quantity of intact NP into systemic circulation. In the present study we track the translocation of FITC-SCT-HAP-NPs (~ 100 nm) across porcine sublingual mucosa using the Franz diffusion cell to validate our hypothesis. Confocal Laser Scanning microscopy (CLSM) established that SCT-HAP-NPs permeated into the deeper layers of sublingual porcine mucosal tissue. We confirmed the nanoparticles were present in the receptor medium of the Franz diffusion cell by DLS and TEM. We also demonstrate for the first time quantification of the NPs (%) translocated across the porcine mucosa, using the Amnis Image StreamX Mk II imaging flow cytometer. Computation revealed transport of ~ 60% of the FITC-SCT-HAP-NPs across mucosa in 2 h, substantiated that high NP concentrations could reach systemic circulation. Such high NP concentration in systemic circulation coupled with the small size (~ 100 nm) and the high bone affinity of HAP, validate our hypothesis of targeted bone delivery following sublingual administration. Furthermore, quantification of translocated NPs, which we demonstrate for the first time, would permit rational development of optimal targeted nanoparticulate carriers for delivery by noninvasive routes.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-025-03068-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

We earlier reported comparable efficacy in bone parameters of sublingually administered salmon calcitonin hydroxyapatite nanoparticles (SCT-HAP-NPs) compared to the subcutaneous injection, in the ovariectomy rat model, despite a bioavailability of barely ~ 15%. We ascribed this intriguing finding to targeted bone delivery, facilitated by translocation of significant quantity of intact NP into systemic circulation. In the present study we track the translocation of FITC-SCT-HAP-NPs (~ 100 nm) across porcine sublingual mucosa using the Franz diffusion cell to validate our hypothesis. Confocal Laser Scanning microscopy (CLSM) established that SCT-HAP-NPs permeated into the deeper layers of sublingual porcine mucosal tissue. We confirmed the nanoparticles were present in the receptor medium of the Franz diffusion cell by DLS and TEM. We also demonstrate for the first time quantification of the NPs (%) translocated across the porcine mucosa, using the Amnis Image StreamX Mk II imaging flow cytometer. Computation revealed transport of ~ 60% of the FITC-SCT-HAP-NPs across mucosa in 2 h, substantiated that high NP concentrations could reach systemic circulation. Such high NP concentration in systemic circulation coupled with the small size (~ 100 nm) and the high bone affinity of HAP, validate our hypothesis of targeted bone delivery following sublingual administration. Furthermore, quantification of translocated NPs, which we demonstrate for the first time, would permit rational development of optimal targeted nanoparticulate carriers for delivery by noninvasive routes.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
AAPS PharmSciTech
AAPS PharmSciTech 医学-药学
CiteScore
6.80
自引率
3.00%
发文量
264
审稿时长
2.4 months
期刊介绍: AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.
期刊最新文献
Amorphous Solid Dispersion/Salt of Efavirenz: Investigating the Role of Molecular Interactions on Recrystallization and In-vitro Dissolution Performance Quantitative Analysis of Salmon Calcitonin Hydroxyapatite Nanoparticle Permeation to substantiate Non-Invasive Bone Targeting via Sublingual Delivery Development and Optimization of Eberconazole Nanostructured Lipid Carrier Topical Formulations Based on the QbD Approach Brazilian Green Propolis Extract-Loaded Poly(Ε-Caprolactone) Nanoparticles Coated with Hyaluronic Acid: Antifungal Activity in a Murine Model of Vulvovaginal Candidiasis Unraveling the Effects of Filtration, Process Interruptions, and Post-Process Agitation on Protein Aggregation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1