Breanna J Sheahan, Alicia G Schubert, William Schubert, M Katie Sheats, Lauren V Schnabel, Jessica M Gilbertie
{"title":"Equine neutrophils selectively release neutrophil extracellular traps in response to chemical and bacterial agonists.","authors":"Breanna J Sheahan, Alicia G Schubert, William Schubert, M Katie Sheats, Lauren V Schnabel, Jessica M Gilbertie","doi":"10.3389/fvets.2025.1512343","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Neutrophil extracellular traps (NETs) play a significant role in response to a variety of infectious and inflammatory stimuli in human and veterinary medicine. Although entrapment of bacteria can be an important function of NETs, the exuberant release of DNA and other intracellular molecules has also been negatively implicated in the pathogenesis of different diseases. Thus, NET formation must be tightly controlled and represents an opportunity for therapeutic interventions. Horses are particularly sensitive to bacterial stimuli that have previously been shown to cause NETs in other species, but the species-specific processes that control NET release have not been fully elucidated.</p><p><strong>Methods: </strong>The purpose of this study was to compare the magnitude of response of equine neutrophils to different chemical and bacterial stimuli, including phorbol 12-myristate 13-acetate (PMA), a calcium ionophore (A23187), <i>Staphylococcus aureus</i>, and <i>Escherichia coli</i>. In addition, we investigated whether ex vivo equine NET formation is controlled by the NADPH-oxidase (NOX) pathway and by autophagy, both of which control NET formation in other species.</p><p><strong>Results: </strong>We demonstrated that equine neutrophils produce robust NETs in response to calcium ionophore and <i>E. coli</i> stimuli and produce fewer NETs in response to PMA and <i>S. aureus</i>. Both NOX-dependent and NOX-independent pathways of NET formation were identified in equine neutrophils. Autophagy inhibition altered the mechanics of NET release, by reducing the amount of extracellular DNA stranding.</p><p><strong>Discussion: </strong>These results provide insight into equine-specific neutrophil biology, which could be key for managing equine diseases such as asthma and laminitis.</p>","PeriodicalId":12772,"journal":{"name":"Frontiers in Veterinary Science","volume":"12 ","pages":"1512343"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891193/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Veterinary Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3389/fvets.2025.1512343","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Neutrophil extracellular traps (NETs) play a significant role in response to a variety of infectious and inflammatory stimuli in human and veterinary medicine. Although entrapment of bacteria can be an important function of NETs, the exuberant release of DNA and other intracellular molecules has also been negatively implicated in the pathogenesis of different diseases. Thus, NET formation must be tightly controlled and represents an opportunity for therapeutic interventions. Horses are particularly sensitive to bacterial stimuli that have previously been shown to cause NETs in other species, but the species-specific processes that control NET release have not been fully elucidated.
Methods: The purpose of this study was to compare the magnitude of response of equine neutrophils to different chemical and bacterial stimuli, including phorbol 12-myristate 13-acetate (PMA), a calcium ionophore (A23187), Staphylococcus aureus, and Escherichia coli. In addition, we investigated whether ex vivo equine NET formation is controlled by the NADPH-oxidase (NOX) pathway and by autophagy, both of which control NET formation in other species.
Results: We demonstrated that equine neutrophils produce robust NETs in response to calcium ionophore and E. coli stimuli and produce fewer NETs in response to PMA and S. aureus. Both NOX-dependent and NOX-independent pathways of NET formation were identified in equine neutrophils. Autophagy inhibition altered the mechanics of NET release, by reducing the amount of extracellular DNA stranding.
Discussion: These results provide insight into equine-specific neutrophil biology, which could be key for managing equine diseases such as asthma and laminitis.
期刊介绍:
Frontiers in Veterinary Science is a global, peer-reviewed, Open Access journal that bridges animal and human health, brings a comparative approach to medical and surgical challenges, and advances innovative biotechnology and therapy.
Veterinary research today is interdisciplinary, collaborative, and socially relevant, transforming how we understand and investigate animal health and disease. Fundamental research in emerging infectious diseases, predictive genomics, stem cell therapy, and translational modelling is grounded within the integrative social context of public and environmental health, wildlife conservation, novel biomarkers, societal well-being, and cutting-edge clinical practice and specialization. Frontiers in Veterinary Science brings a 21st-century approach—networked, collaborative, and Open Access—to communicate this progress and innovation to both the specialist and to the wider audience of readers in the field.
Frontiers in Veterinary Science publishes articles on outstanding discoveries across a wide spectrum of translational, foundational, and clinical research. The journal''s mission is to bring all relevant veterinary sciences together on a single platform with the goal of improving animal and human health.