Taswar Ahsan, Mahnoor, Sulaiman Ali Alharbi, Maha A Alshiekheid, Amal Abdullah A Sabour, Ismail Khan, Mohammad Javed Ansari
{"title":"Genome Mining and Antagonism of Stenotrophomonas geniculata MK-1, Against Peanut Foliage Fungus Diseases.","authors":"Taswar Ahsan, Mahnoor, Sulaiman Ali Alharbi, Maha A Alshiekheid, Amal Abdullah A Sabour, Ismail Khan, Mohammad Javed Ansari","doi":"10.1002/jobm.70016","DOIUrl":null,"url":null,"abstract":"<p><p>Stenotrophomonas geniculata, a bacterium, has been recognized as an eco-friendly substitute for chemical fungicides in managing peanut foliar diseases, web blotch, and early leaf spot. Core genome and pan-genome analysis identified that strain MK-1 belongs to Stenotrophomonas geniculata, and nucleotide polymorphism (SNP) analysis confirmed that strain belongs to Stenotrophomonas maltophilia. The research revealed that S. geniculata MK-1 had a notable antagonistic impact on Peyronellaea arachidicola and Cercospora arachidicola and demonstrated a biocontrol efficacy of over 95% against peanut early leaf spot and web blotch disease. The nonredundant protein sequences (NR) database identified 4324 annotations related to S. geniculata, with 2682 genes similar to strain MK-1. The COG database categorized 3041 annotations into 22 functional groups, and 33 distinct metabolic pathways associated with 1851 Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations. Most genes linked with metabolism are found in S. geniculata, with 380 genes related to carbohydrate metabolism and 44 genes related to secondary metabolite biosynthesis. The Carbohydrate-Active enZYmes (CAZy) database identified 194 annotations are linked to non-ribosomal synthesis of secondary metabolites. The Pathogen-Host Interactions (PHI) database showed reduced virulence in strain MK-1, while unaffected pathogenicity protein counts were 52. The MK-1 strain can produce antifungal siderophores secondary metabolites, non-ribosomal peptide synthetase (NRPS), and siderophores.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e70016"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jobm.70016","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Stenotrophomonas geniculata, a bacterium, has been recognized as an eco-friendly substitute for chemical fungicides in managing peanut foliar diseases, web blotch, and early leaf spot. Core genome and pan-genome analysis identified that strain MK-1 belongs to Stenotrophomonas geniculata, and nucleotide polymorphism (SNP) analysis confirmed that strain belongs to Stenotrophomonas maltophilia. The research revealed that S. geniculata MK-1 had a notable antagonistic impact on Peyronellaea arachidicola and Cercospora arachidicola and demonstrated a biocontrol efficacy of over 95% against peanut early leaf spot and web blotch disease. The nonredundant protein sequences (NR) database identified 4324 annotations related to S. geniculata, with 2682 genes similar to strain MK-1. The COG database categorized 3041 annotations into 22 functional groups, and 33 distinct metabolic pathways associated with 1851 Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations. Most genes linked with metabolism are found in S. geniculata, with 380 genes related to carbohydrate metabolism and 44 genes related to secondary metabolite biosynthesis. The Carbohydrate-Active enZYmes (CAZy) database identified 194 annotations are linked to non-ribosomal synthesis of secondary metabolites. The Pathogen-Host Interactions (PHI) database showed reduced virulence in strain MK-1, while unaffected pathogenicity protein counts were 52. The MK-1 strain can produce antifungal siderophores secondary metabolites, non-ribosomal peptide synthetase (NRPS), and siderophores.
期刊介绍:
The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions.
Papers published deal with:
microbial interactions (pathogenic, mutualistic, environmental),
ecology,
physiology,
genetics and cell biology/development,
new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications)
novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).