{"title":"Unraveling the effect of spermidine on biochemical, anatomical and yield attributes in chickpea under chloride dominated salinity.","authors":"Mamta Sawariya, Sunder Singh Arya, Ajay Kumar, Himanshu Mehra, Neha Yadav, Naveen Kumar, Monika Janaagal, Sarita Devi","doi":"10.1007/s12298-025-01551-z","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the effect of foliar application of spermidine (Spd) on salt-stressed chickpea genotypes under natural environmental conditions. Four chickpea genotypes were treated with chloride-dominated salinity levels of 4.0 and 8.0 dSm<sup>-1</sup>, followed by foliar application with 0.5 and 1.0 mM Spd during the reproductive stage. The findings reveal that Spermidine application markedly enhances the total chlorophyll upto 21.27%. It also enhanced the total soluble carbohydrate about 46.68% and protein content upto 40% in all chickpea genotypes but HC 3 shows maximum increase, thereby augmenting yield about 36% in HC 5 genotypes under salt stress. Additionally, Spermidine application facilitates the enlargement of xylem vessels diameter upto 34.53% in pedicel and reduction in epidermal wall thickening about 29.33% of filament under salt stress. Importantly, the efficacy of Spermidine application is particularly pronounced in salt-affected chickpea genotypes, especially the 0.5 mM concentration. The insights gained offer a potential solution to enhance plant tolerance and productivity under adverse conditions.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"31 2","pages":"283-298"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11890706/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-025-01551-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effect of foliar application of spermidine (Spd) on salt-stressed chickpea genotypes under natural environmental conditions. Four chickpea genotypes were treated with chloride-dominated salinity levels of 4.0 and 8.0 dSm-1, followed by foliar application with 0.5 and 1.0 mM Spd during the reproductive stage. The findings reveal that Spermidine application markedly enhances the total chlorophyll upto 21.27%. It also enhanced the total soluble carbohydrate about 46.68% and protein content upto 40% in all chickpea genotypes but HC 3 shows maximum increase, thereby augmenting yield about 36% in HC 5 genotypes under salt stress. Additionally, Spermidine application facilitates the enlargement of xylem vessels diameter upto 34.53% in pedicel and reduction in epidermal wall thickening about 29.33% of filament under salt stress. Importantly, the efficacy of Spermidine application is particularly pronounced in salt-affected chickpea genotypes, especially the 0.5 mM concentration. The insights gained offer a potential solution to enhance plant tolerance and productivity under adverse conditions.
期刊介绍:
Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.