A novel photothermal composite membranes for solar pervaporation desalination

IF 9.7 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Journal of Cleaner Production Pub Date : 2025-03-12 DOI:10.1016/j.jclepro.2025.145290
Tingting Yue, Mingyang Zhu, Xiufeng Hu, Wei Yu, Zhenying Wang, Hui Lei
{"title":"A novel photothermal composite membranes for solar pervaporation desalination","authors":"Tingting Yue, Mingyang Zhu, Xiufeng Hu, Wei Yu, Zhenying Wang, Hui Lei","doi":"10.1016/j.jclepro.2025.145290","DOIUrl":null,"url":null,"abstract":"Pervaporation (PV) technology, which combines heat treatment with membrane separation, has emerged as a promising desalination process due to its high unipolar separation rate and energy efficiency. However, traditional pervaporation systems necessitate the heating of the feed solution to establish a vapor pressure differential across the membrane, leading to significant energy consumption. In contrast, solar energy offers a clean and abundant resource, making its integration with pervaporation an effective approach to achieve desalination at a lower energy cost. In this study, carbon nanotubes (CNTs) and graphene nanosheets (GNSs) are utilized as efficient photothermal conversion materials. We developed innovative photothermal composite membranes based on polyvinyl alcohol (PVA) blended with CNTs or GNSs (PVA-CNTs/PVA-GNSs), which were subsequently incorporated into a novel solar pervaporation (SPV) system. In this SPV system, the feed solution is heated by solar radiation that is absorbed by the CNTs/GNSs on the membrane's surface, significantly reducing the energy costs associated with the system. Experimental results demonstrate a remarkable membrane flux of 3.02 kg/m<sup>2</sup>·h, indicating that this novel SPV system outperforms many previously reported solar desalination systems. This study establishes a foundation for low-energy SPV desalination and provides a promising pathway for developing practical desalination applications utilizing pervaporation technology.","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":"20 1","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jclepro.2025.145290","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pervaporation (PV) technology, which combines heat treatment with membrane separation, has emerged as a promising desalination process due to its high unipolar separation rate and energy efficiency. However, traditional pervaporation systems necessitate the heating of the feed solution to establish a vapor pressure differential across the membrane, leading to significant energy consumption. In contrast, solar energy offers a clean and abundant resource, making its integration with pervaporation an effective approach to achieve desalination at a lower energy cost. In this study, carbon nanotubes (CNTs) and graphene nanosheets (GNSs) are utilized as efficient photothermal conversion materials. We developed innovative photothermal composite membranes based on polyvinyl alcohol (PVA) blended with CNTs or GNSs (PVA-CNTs/PVA-GNSs), which were subsequently incorporated into a novel solar pervaporation (SPV) system. In this SPV system, the feed solution is heated by solar radiation that is absorbed by the CNTs/GNSs on the membrane's surface, significantly reducing the energy costs associated with the system. Experimental results demonstrate a remarkable membrane flux of 3.02 kg/m2·h, indicating that this novel SPV system outperforms many previously reported solar desalination systems. This study establishes a foundation for low-energy SPV desalination and provides a promising pathway for developing practical desalination applications utilizing pervaporation technology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cleaner Production
Journal of Cleaner Production 环境科学-工程:环境
CiteScore
20.40
自引率
9.00%
发文量
4720
审稿时长
111 days
期刊介绍: The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.
期刊最新文献
Constructed wetland for enhanced nitrogen removal of carbon limited wastewater and its economic and environmental assessment: A review. A novel photothermal composite membranes for solar pervaporation desalination Design consideration with dividing wall column for production of renewable olefins with economic, environmental, energy, and exergy (4Es) criteria Atmospheric carbonyls in urban Beijing in the summertime under the continuous implementation of clean air actions: decreasing trends, source apportionments and new insights for control strategies Enclosure restoration regulates epiphytic microbial communities involved in carbon sequestration in a restored urban lake: A new insight from the stability of dissolved organic matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1